
1

Fast JND-Based Video Carving with GPU

Acceleration for Real-Time Video Retargeting
Chen-Kuo Chiang, Student Member, IEEE, Shu-Fan Wang, Student Member, IEEE, Yi-Ling Chen, Student

Member, IEEE, Shang-Hong Lai, Member, IEEE

Abstract—A recently developed image technique, seam carving,
has been proved to be a useful tool for content-adaptive spatially
non-uniform image resizing with the purpose of optimal display
on a screen of reduced resolution or different aspect ratio. In
this paper, we present a fast algorithm for real-time content-
aware video retargeting based on the improved seam carving
method proposed in this paper. The proposed algorithm is
designed to be highly parallelizable and suitable for running on
a multi-core architecture. First, two novel operators, i.e. seam
update and seam split, are introduced to analyze an image
for detecting the local and global seams with minimum costs
very efficiently. With these operators, parallel processing can
be achieved to determine multiple seams simultaneously. In
addition, the saliency measure is extended with a Just-Noticeable-
Distortion (JND) model which makes the resized video more
consistent with human perception. We demonstrate the efficiency
of the above new components with a GPU implementation. In
addition, the proposed fast seam carving algorithm is extended
for video retargeting. To the best of our knowledge, this is the
first paper based on the seam carving method to achieve real-
time video retargeting on GPU. Experimental results on video
sequences of various characteristics are demonstrated to show the
superior performance of the proposed algorithm in comparison
with the existing content-adaptive image/video resizing methods.

Index Terms—Graphics processing unit (GPU), seam carving,
video retargeting.

I. INTRODUCTION

A
S moderate video camcorder becomes more and more

affordable, users can easily create their own media

content. However, the media content is usually generated to

be displayed on devices of a specific resolution. To fit it into

different types of display devices, the video frames could be

resized adaptively based on their content and the aspect ratio

could be changed while the important part of the content can

be retained as best as possible. This problem is referred to

as video retargeting [1], which is to adapt a video for better

viewing on a different display device with different resolution

and aspect ratio. Fig.1 depicts an example for this problem.

Some existing methodss, such as image scaling or cropping,

are fast and simple solution but they may cause unpleasant

viewing experiences. Scaling tends to lose detailed information

and sometimes makes the region of interest too small for

viewing, whereas cropping discards data outside the cropping

window and it may lose important information. Therefore, it

is important to develop an efficient and effective approach to

retarget videos to some common resolutions used in various

display devices.

{ckchiang,shufan,yilin,lai}@cs.nthu.edu.tw

(a)

(b) (c)

Fig. 1. (a) The input image. (b) Uniformly scaling the image in the horizontal
direction. (c) Adaptively removing the less important regions according to
image content.

Seam carving [2] is a content-aware image resizing tech-

nique that changes the image size by recursively removing or

inserting a seam with minimal cost from top to down or from

left to right in the image. The cost of a path or seam is defined

according to an importance map estimated for all pixels. After

successively removing or inserting paths with minimal costs,

the resized image still retains the most perceptually important

regions.

Seam carving in general provides satisfactory adaptive im-

age resizing results, but it is computationally too expensive for

video retargeting. In this paper, we present a multi-seam search

scheme for efficient seam carving. The proposed method

analyzes an image to detect the local and global seams with

minimal costs. Local seams are determined by removing multi-

ple seams simultaneously, thus improving the efficiency of the

original seam carving algorithm. In addition, we introduce a

just-noticeable-distortion (JND) model into the saliency map

required in seam carving, which is computed from various

types of image features, such as gradient, entropy, visual

saliency, segmentation, etc. The proposed JND-based spatio-

temporal model makes saliency measure more consistent with

human perception.

Based on the proposed new components, we extend the

proposed fast seam carving algorithm for efficient video

retargeting. In addition, this algorithm combines temporal

2

Input Video Frame Saliency Estimation

JND−based Enhancement Multiple Seam Search Video Retargeting

Fig. 2. Algorithmic flow of the proposed method

coherence with a combined JND-based measure in the spa-

tial and temporal domains into the saliency measure, thus

leading to smooth viewing experiences. We demonstrate that

the proposed video carving algorithm is computationally ef-

ficient compared to other existing methods. On the other

hand, general-purpose computing on graphics processing units

(GPGPU) has attracted much attention in recent years [3].

The parallel computing power of GPUs has been employed

to speed up the computationally intensive applications, which

were traditionally processed with CPUs. We demonstrate that

the proposed method can greatly benefit from GPU imple-

mentation in terms of computational efficiency since it is

highly parallelizable. For video sequences of moderate sizes,

the proposed method can easily achieve real-time performance

with GPU implementation.

The main contributions of this paper are summarized as

follows:

• A fast seam carving algorithm, which is based on a novel

multi-seam search scheme, is presented for content-aware

image resizing.

• The proposed algorithm is designed to be highly paral-

lelizable and suitable for multi-core architecture.

• We extend the proposed fast seam carving algorithm for

video retargeting, which can be accomplished in real time

with GPU acceleration.

The rest of this paper is organized as follows. We first

review the related works in section II. A system overview

is presented in section III. The proposed fast seam carving

algorithm and the JND-based image saliency measures are

introduced in section IV and V, respectively. The extension

of the fast seam carving to video carving is described in

section VI. Then, the GPU implementation of the proposed

algorithm is presented in section VII. Section VIII gives some

experimental results with comparison to some other previous

competing methods. We conclude this paper in the last section.

II. RELATED WORK

Image resizing is a very useful tool in many applications.

Traditionally, it uniformly scales or crops an image to produce

a new image of the desired size. Recently, as the demand of

changing the aspect ratios for images and videos increases,

some adaptive image retargeting methods that non-uniformly

scale the image based on the importance of image content have

been proposed to enhance human viewing experience.

The idea of incrementally removing or inserting paths for

image resizing was firstly proposed by Avidan and Shamir,

which is known as the seam carving algorithm [2]. An 8-

connected path of least importance pixels is incrementally re-

moved or inserted into an image to be resized. Their algorithm

showed good results on images in many cases. However, it

may fail to preserve object structure, such as straight lines.

Therefore, they improved the seam carving algorithm to find

minimal-cost seams by computing the forward energy to

reduce the effect of artifacts [4].

In the content-aware approach, warping is a common tech-

nique that has been used widely for image resizing and video

retargeting. Liu and Gleicher [5] introduced a non-linear, data-

dependent scaling for image warping.

In addition, Wolf et al. [1] proposed to automatically

detect important regions in the image by combining saliency

measure, face detector and motion estimation. It formulates the

grid mapping for the image resizing as solving a large linear

system of equations. Based on the similar idea, Wang et al. [6]

presented a method that allows important regions to be scaled

uniformly and homogeneous regions to be distorted. This

method shows better capability of preserving important image

regions since homogeneous regions can be safely removed or

distorted.

In the past few years, we have seen great progress on GPUs.

With extensive arithmetic units and large memory bandwidth,

the computational power of GPUs nowadays is much higher

than that of CPUs. More and more computationally intensive

tasks other than traditional computer graphics problems are

now migrating from CPUs to GPUs to achieve better time

efficiency. Some examples include solving differential equa-

tions [7], video coding [8], stereo vision [9], image and signal

processing [10], [11]. In this paper, we employ the Compute

Unified Device Architecture (CUDA) recently developed by

NVIDIA to accomplish the task of real-time video retargeting.

III. SYSTEM OVERVIEW

The algorithmic flow of the proposed method is illustrated

in Fig. 2. The proposed system takes a video sequence as

3

input and processes it frame by frame. To better account for

human perception, when a video frame is loaded into main

memory (or video memory of a graphics card), it is firstly

converted into grayscale before performing the proposed JND-

based image enhancement. A saliency map is then computed

by applying an edge detection filter to the enhanced image.

The proposed fast seam carving technique is utilized to locate

multiple seams of minimal energy according to the saliency

map. These seams record the pixels to be removed from

the current image and also help to determine the seams in

the next frame more efficiently. To further reduce the com-

putational cost, an optional image down-sampling operation

can be applied first such that all the successive steps are

performed at smaller image scales. If image down-sampling

is applied, the seams to be removed need to be converted

to the original image scale. It is worth noting that many

operations involved in the carving-based video retargeting,

such as image convolution, can be carried out with parallel

computing very efficiently. A modern programmable graphics

hardware is thus very suitable for boosting the performance

of the proposed system. In section 7, the comparison between

the performance of a pure CPU implementation and the GPU

accelerated version will be presented.

IV. PROPOSED FAST SEAM CARVING SCHEME

A. The Seam Carving Method

Seam carving [2] is a simple and effective technique for

image resizing. An path from top to down or from left to

right is removed or inserted according to the associated cost

computed from the image saliency. Thus, the aspect ratio of

the image can be adjusted accordingly. Let I be an n × m
image and a vertical seam is defined to be:

sx = {sx
i }

n
i=1 = {(x(i), i)|1 ≤ i ≤ n, |x(i) − x(i − 1)| ≤ 1}

(1)

where x is a mapping such that x : [1, · · · , n] → [1, · · · ,m].
That is, a vertical seam is defined to be an 8-connected path

from top to bottom in the image, containing one, and only one,

pixel in each row of the image. Similarly, if y is a mapping

y : [1, · · · ,m] → [1, · · · , n], then a horizontal seam is:

sy = {sy
j}

m
j=1 = {(j, y(j))|1 ≤ j ≤ m, |y(j)−y(j−1)| ≤ 1}

(2)

The pixels on the path of vertical seam si will be:

Is = {I(si)|1 ≤ i ≤ n} = {I(x(i), i)}n
i=1 (3)

Note that removing the pixels of a vertical seam from an image

makes all the pixels on the right of the seam shift left to

compensate for the missing path.

The strategy of seam carving method is to remove unnotice-

able seams. Therefore, it will have the least visual impact after

image resizing. This leads to use image saliency to measure

the importance of pixels. Seam carving supports several types

of saliency measure, such as gradient magnitude, entropy,

segmentation, etc. Given a saliency function e, the cost of

a seam is defined as:

E(s) =

n
∑

i=1

e(I(si)) (4)

The seam with minimal cumulative cost will be removed. The

optimal seam s∗ that minimizes the seam cost is:

s∗ = arg min
s

E(s) = arg min
s

n
∑

i=1

e(I(si)) (5)

Dynamic programming is used to find the optimal seam. First,

traverse the image from the second row to the last row and

compute the cumulative minimum cost M for all possible

connected seams for each entry (i, j):

M(i, j) = e(i, j) + min(M(i − 1, j − 1),

M(i − 1, j),M(i − 1, j + 1)) (6)

At the end of the process, each entry in the last row of M
represents the minimal cumulative cost of a path ending at

the corresponding pixel. Hence, backtracking from the pixel

with minimal-cost corresponds to the path of the optimal seam.

The procedure for finding the minimal-cost horizontal seams is

similar to that for the vertical seams and is omitted for brevity.

B. Local Seam versus Global Seam

The optimal seam, which has minimal cumulative cost in the

whole image, is referred to as the global seam. Removing or

inserting an optimal seam introduces the least visual impact on

the image. However, to find a global seam and remove it from

an image only reduces one pixel in width or height. After such

seam is removed from the image, we need to re-compute the

cumulative cost array M before determining the next optimal

seam. It is too expensive to apply this procedure repeatedly

for real-time applications. In Fig. 3, all seams are back-traced

after the process of cost accumulation. We observe that seams

are not fully chaotic. On the contrary, they tend to converge

to several locally-minimal seams. Such seams are called local

seams. A local seam is defined as

sl = arg min
s∈Ω

E(s) = arg min
s∈Ω

n
∑

i=1

e(I(si)) (7)

Ω is a set of seams in the local neighborhood. Local seams

have less accumulative costs than those of other seams locally.

In the seam carving operation, we remove the global seam

one by one to reduce the image size. In fact, we are removing

local seams from one area to another. Therefore, if we can

manipulate multiple local seams simultaneously, the efficiency

of the seam carving procedure can be greatly improved.

Note that, Ω in the above equation is not a parameter to be

determined. The proposed method will detect all local seams

without knowing the size of Ω. (See subsection C.)

Using local seams to improve the efficiency of the seam

carving process is practical if the following conditions hold:

1) A number of local seams are present in an image.

2) The overhead to find local seams is light.

3) To process multiple local seams simultaneously does not

degrade the perceptual quality.

4) It is applicable to all types of images.

To validate these conditions, we have performed tracing of

local seams on a wide variety of images contained in the

dataset SIMPLIcity [12], [13]. We observed that all seams

4

Fig. 3. All seams are traced after the process of cost accumulation for a wide variety of test images. The results show that all seams tend to converge to
several local minima.

Fig. 4. Multiple seam searching. After finding the first path P0(A to Q),
tracing is restarted from the next entry of the last row in the energy map
M . One path with less cumulative energy than P0 will update P0 with the
partial path, such as P2 (replace partial path AG with CH). Paths with higher
cumulative costs will be discarded, such as P1 (BE). If it does not meet any
pixel of previous seam during the tracing, a new path is created, such as P3

(JR) and Path P2 is considered as a local seam. The number of the pixels
in the partial path is also checked during the tracing process. Seam split is
performed when it is over a threshold. Path KR may split from path JR to
either path KMST or path KMSU.

converge to several local seams in all test images. In the

subsequent subsections, we present a mult-seam search scheme

which locates multiple seams to be removed with low costs,

and a JND-based saliency measure which is consistent to

human perception to improve the quality of energy estimation

required in the seam carving process.

C. Multiple Seam Searching

Finding multiple local seams for removal and insertion re-

duces the computation involved in the update of the cumulative

cost array and the management of internal data structures. We

propose a mult-seam search algorithm for fast seam carving,

which consists of the following two stages: seam update and

seam split.

Seam Update: Seam update focuses on finding all local seams.

Recall that, in the seam carving process, the optimal seam can

be found by using dynamic programming. Each entry in the

last row of matrix M represents the minimal cumulative cost

of a path ending at the corresponding pixel. Seam update traces

a path from the first entry in the last row (left-bottom pixel

in the image)upward to the top of the image. Sequentially,

all pixels are traced from left to right until the right-bottom

pixel is completed. During the upward tracing, if the current

path meets any pixel of the former path, the total cumulative

cost is compared to that of the former path. If it has a higher

total energy, this path is abandoned. Otherwise, the path is

used to update the former path. Only partial path before the

intersection pixel is required for seam update. During the

process, it records only one path with the minimal cumulative

cost. For any path that does not meet any pixel belonging to

the recorded path, this path is created as a new initial path and

the seam update starts to process for another set of seams. The

currently recorded path is considered as a local seam.

Seam Split: Seam split is adopted to find more disjoint paths

to remove or insert. In our observation, different paths may

meet at the top of the image but come from entries far apart

from the bottom row. Seam split separates paths with just a

few common pixels in order to make more disjoint seams.

When the current path meets any pixel in the former paths

during the tracing process, this path is split from the former

if the pixel number of the partial path is over a threshold S.

After the splitting, the current path selects pixels among the

top, top-left and top-right neighbors with the minimal cost to

form a path upward to the top of the image. In the video

retargeting applications, the threshold can be used as a speed

control parameter because more disjoint seams usually lead to

faster operations. The determination of this threshold depends

on the requirements of the application. S is set as a ratio of

image height when we need to resize image width. In our

experiment, S is set to 0.8.

Note that, if only one local seam found in the seam update

process, the method degenerates to the original seam carving

method. Thus, the seam spilt is proposed to boost the number

of disjoint paths. Fig. 4 depicts an example of the seam update

and split process. Note that, as in our observation, most paths

meet near the bottom of the image. Tracing just a few pixels

is sufficient to decide if it is qualified for update. Therefore,

it does not introduce much computational overhead in these

steps. After all local seams are discovered, K minimal-cost

seams are chosen among them to perform seam removal or

insertion.

The complexity of saliency measure computation for an m
by n image is O(nm). The complexity of dynamic program-

ming to find the optimal seam is O(nm). To trace back the

optimal seam is O(m). If p seams are to be removed, the total

complexity is p× (O(nm)+O(nm)+O(m)) ' O(pnm). In

multi-seam carving scheme, if the average number of local

minimal seams to be removed is K, the trace back takes

O(nm). Then, the overall complexity is (p/K) ∗ (O(nm) +
O(nm) + O(nm)) ' O(pnm/K). Theoretically, if n and m
are large enough, the computational reduction can approxi-

mately reach K times.

5

V. JND-BASED ENERGY ENHANCEMENT

A. Importance Measure

The main idea of seam carving is to find the seams with

the minimal costs. Removing or inserting such seams will

cause least visual impact on the image, thus yielding good

viewing experiences after resizing. To preserve good visual

quality and reasonable image content structure after resizing,

seam carving relies on the choice of the importance measure.

Poor saliency measure usually causes flaws in the resized

image, such as edge discontinuity, boundary missing or object

distortion. Therefore, the effectiveness of importance measure

is the key to achieve satisfactory visual quality.

Since the ultimate receiver of video signals is the human

visual system (HVS), the goal of video retargeting should be

aimed at the preservation of visually important regions, such as

objects or human faces, at certain level of perceptual quality.

In this section, we introduce a Just-Noticeable-Distortion

(JND) model for the spatio-temporal image enhancement

which makes importance measure more consistent with human

perception for video carving.

B. JND-Based Spatio-Temporal Enhancement

A JND model is measured based on the observation that

human eyes are insensitive to the intensity changes around

a pixel below the JND threshold due to the spatial/temporal

sensitivity and masking properties [14]. An appropriate JND

model can significantly improve the measure of video saliency.

To preserve the important areas, we propose a JND-based

image enhancement for saliency measure.

The main idea of the proposed JND-based saliency measure

is to first apply the JND-based image enhancement, followed

by employing a saliency measure on this enhanced image. The

local areas that HVS can perceive changes should contribute

more to the cost than those areas that HVS can not perceive

changes. Less important areas should be adjusted to contribute

less to the total cost. Thus, the proposed JND-based impor-

tance enhancement is defined as follows:

R̃(x, y, t) =

R(x, y, t) − ρ, if R(x, y, t) − R̄B < −ρ
R̄B, elseif

∣

∣R(x, y, t) − R̄B

∣

∣ ≤ ρ
R(x, y, t) + ρ, otherwise

(8)

where R(x, y, t) is the intensity at location (x, y) and time t, ρ
stands for λ·JND(x, y, t). Note that JND(x, y, t) is the final

model that takes luminance, texture and temporal masking into

consideration, R̄B is the average intensity of local background,

and λ is a control parameter.

R̃(x, y, t) contains the adjusted intensity. Take λ = 1
for example, if the difference between R(x, y, t) and the

background is below the JND threshold, HVS can not perceive

the difference, and R(x, y, t) is adjusted to the background.

On the contrary, if the difference is above the threshold, the

difference is further emphasized by adding or subtracting the

JND value from R(x, y, t). Thus, if HVS can not sense the

difference, the difference will be suppressed. Otherwise, the

difference will be enhanced to denote a more important region.

After such adjustment, we may apply any other image operator

(a) (b)

(c) (d)

Fig. 5. (a) The source image. (b) The gradient map obtained by Sobel oper-
ator. (c) The energy map after applying JND-based importance enhancement
scheme. (d) The enhanced image of (a).

e(x, y, t) to the adjusted image. This leads to a saliency

measure that is more consistent with human perception by

considering luminance, texture and temporal masking.

e(x, y, t) =

∣

∣

∣

∣

∂

∂x
R̃(x, y, t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂

∂y
R̃(x, y, t)

∣

∣

∣

∣

(9)

Compared to a gradient-based energy map, a JND-based

saliency map hides more intensity change that HVS can not

perceive in smooth or background areas based on the JND

model. Furthermore, it enhances the details, like the edge and

object boundary, that HVS can perceive to a certain degree,

as shown in Fig. 5.

A JND model which considers both spatial and temporal

effects can be denoted as

JND (x, y, t) = JNDs(x, y) · JNDt(x, y, t) (10)

There are two major factors of spatial JND in image domain:

1) background luminance masking, 2) texture masking. In [15]

and [16], the relationship between luminance (x, y) and the

average background luminance is modeled by a root equation

for low background luminance (below 127) while the part

over 127 is approximated by a linear function, as illustrated

6

(b) Interframe Luminance Difference

f
3

−255 0 255

4.8

3.6

2.4

20

18

16

14

12T
l

10

8

4

6

(a) Average background luminance

6.0

1.2

0 128 255

Fig. 6. (a) Illustration of luminance modeling. Tl is a function of average
background luminance. (b) Temporal masking function.

in Fig. 6(a):

Tl(x, y) =

17(1 −

√

Ī(x, y)
127) + 3, if Ī(x, y) ≤ 127,

3
128(Ī(x, y) − 127) + 3, otherwise.

Ī(x, y) =
1

32

5
∑

i=1

5
∑

j=1

I(x − 3 + i, y − 3 + j) · B(i, j) (11)

where Tl(x, y) is the visibility thresholds for the luminance

masking, I(x, y) is the pixel intensity, and B(i, j) is a

weighted low-pass filter.

Texture masking can be determined with local gradients

around the pixel. However, edge and non-edge regions should

be distinguished for more accurate JND estimation. This is

because edge structure attracts more attention from HVS. It

is much easier for HVS to detect distortion around edge than

that in smooth and textured regions. In [17], Tt(x, y) takes the

difference for edge into account:

Tt(x, y) = max
k=1,2,3,4

{|gradk(x, y)|}

gradk(x, y) = I(x, y) ⊗ gk(x, y)
(12)

where Tt(x, y) denotes the maximal weighted average of

gradients around pixel (x, y), ⊗ is the convolution operator

and gk(x, y) is the k-th directional high-pass filter.

The combination model in [15] is used to form the spatial

JND:

JNDs(x, y) =

{

T1(x, y), if T1(x, y) ≥ Tt(x, y)
β + 3, if Tt(x, y) > T1(x, y)

(13)

The minimal luminance JND is 3 according to statistics in

Fig. 6(a), and β is a parameter to control the degree of texture

magnitude.

From temporal consideration, video motion usually intro-

duces a lot of inter-frame difference. This leads to larger

temporal masking. In [18], temporal masking is shown as the

empirical curve in Fig. 6(b).

JNDt (x, y, t) = f3(ild(x, y, t)) (14)

ild (x, y, t) = 0.5×

(I (x, y, t) − I (x, y, t − 1) + I (x, y, t) − I (x, y, t − 1))
(15)

where ild(x, y, t) represents the average inter-frame luminance

difference between the t-th and (t − 1)-th frame. I(x, y, t) is

the average intensity and is the empirical function defined in

Fig. 6(b). In the case of small inter-frame changes, the scaling

factor is around its minimum. The scaling factor increases with

the increase of inter-frame luminance difference.

VI. VIDEO CARVING

The seam carving technique for image resizing can be

extended to video carving for video resizing by exploiting the

temporal coherence and the importance measures of seams. In

our fast seam carving scheme, K minimal-cost local seams

are chosen for the first frame. The temporal coherence can

be consistently maintained as follows. The k-th vertical local

seam in frame t− 1, k = 1, · · · ,K, is denoted by kSx(t− 1),
which is defined by

ksx(t − 1) =
{(xk(i), i, t − 1) | 1 ≤ i ≤ n, |x(i) − x(i − 1)| ≤ 1}

(16)

where xk(i) is the x-coordinate of i-th pixel in the k-th local

seam. Three candidate seams in frame t for local seam k is

defined as follows:

sx0(t) = {(xk(i) − 1, i, t − 1)}n
i=1

sx1(t) =k Sx(t − 1)
sx2(t) = {(xk(i) + 1, i, t − 1)}n

i=1

(17)

The best seam kSx in frame t is chosen to be the one that

minimizes this seam cost among the three candidate seams,

i.e.

kSx (t) = min
s∈{sx0 (t),sx1 (t),sx2 (t)}

(

n
∑

i=1

e (I(Si))

)

(18)

Local seam k and all its extensions in temporal space form

a surface in the 3D video cube, as depicted in the right most

of Fig. 2. as depicted in the right most of Fig. 2. After

picking the best K local seams, the carving process removes

K seams and their surfaces to reduce K in width. Applying

this carving process recursively yields a resized video. The

expanding problem is similar to the reducing problem. A

detailed description is omitted for brevity.

We can, therefore, design an online system for video carv-

ing. This means we do not have to build a system to calculate

the temporal seams for the whole shot. Instead, an order of

seam removal is maintained. After resizing the current frame to

the target size, choosing the best candidate for each seam can

be processed according to the order. Note that, for efficiency,

not the entire frame needs the computation of the spatio-

temporal JND saliency cost. Instead, it is computed only at

the pixels on the candidate seams.

VII. VIDEO RETARGETING ON GPU

In this section, we introduce the GPU implementation of

our video retargeting system with CUDA. Under the CUDA

architecture, GPUs are designed to be a single instruction mul-

tiple data (SIMD), multi-threaded manycore processor, which

integrates the vertex and pixel shader into a unified computing

unit and provides a software environment that enables pro-

grammers without strong knowledge of graphics concepts to

utilize them as a coprocessor of CPU. In CUDA programming,

parallelism is achieved by partitioning the computation task

into finer sub-problems that can be solved independently in

7

Seam Recovery (Optional) Seam Update / Seam Split

Seam Selection

Down-sampling

(Optional)
Grayscale Transformation Spatio-Temporal JND

Multiple Seams

Removal / Insertion
Saliency Computation

GPU

CPU

Video Frame
Resized Frame

Buffered Frame

Video data flow

Saliency measure flow

Seam control flow

Fig. 7. Block diagram of the proposed system.

parallel by the so-called kernels. CUDA kernel functions are

executed by threads organized into thread blocks, which are

then dispatched to one of the multiprocessors of GPU.

Fig. 7 illustrates the system components of the proposed

system, which also indicates the components that have been

implemented on GPU. Some system components that present

data dependency and more complex control flow are accom-

plished on CPU. For example, the determination of local

seams requires the partial results of previous seams, which is

carried out sequentially on CPU. As shown in Fig. 7, the input

frames are buffered in video memory on GPU and resized.

This refers to video data flow. For the buffered data on GPU

memory, parallel operations are performed. These are included

in saliency measure flow. Then, we perform the multi-seam

search on CPU side and instruct the GPU to perform the image

resizing operations to remove the seams of least cost. This

refers to seam control flow. The previous results are utilized

to accomplish the resizing process of subsequent frames.

Thread Operation

Scalable

Data

Partition

...

Seam

…

Thread

Operation

Fig. 8. Two types of parallelization operations: image convolution operation
(left) and image resizing operation (right).

The parallelization in our system contains two types of op-

erations: image convolution operation and image resizing op-

eration. The convolution-based operations, such as grayscale

translation, JND-based image enhancement and saliency es-

timation, mostly involves in applying a convolution mask to

each of the image pixels to form a new pixel value. In our

CPU implementation, each video frame is partitioned into a

number of disjoint blocks that are independently processed.

Under the CUDA environment, these pixel-wise computation

can be more efficiently realized by creating a thread for each

single pixel. Fig. 8 depicts the parallelization of the image

convolution operation. The image resizing operation compacts

a video frame in horizontal or vertical direction once a seam

is ready for removal. The main operation of image resizing

involves in shifting the pixels lying on one side of the removed

pixel forward or backward to compact the fragmentation of the

image, which can only be realized sequentially for each row

of column of pixels (see Fig. 8).

VIII. EXPERIMENTAL RESULTS

We conduct several experiments for comparing the proposed

algorithm to the original seam carving [2] and the warping-

based algorithm by Wolf et al. [1]. In our implementation,

the parameter K for fast seam carving is 5, β = 2.5 in spatial

JND and λ = 0.5 in JND-based enhancement. We apply image

down-sampling by a factor of 4 in our experiments. Note that

different high-level image saliency measures can be included

to improve the saliency measure, such as face detection and

motion estimation used in [1]. For a fair comparison of

computational efficiency, we do not add these components to

the method by Wolf et al. [1] for efficiency comparison.

We have implemented the proposed method in two versions:

pure CPU-based and GPU accelerated. To validate the im-

pact of parallel processing, the CPU-based program is multi-

threaded and tested on a single- and dual-core Intel PC,

respectively. The GPU-based implementation is accomplished

on the same single-core PC equipped with a GeForce 8800GT

GPU and 512 MB video memory. Without specifically men-

tioned, all experimental results reported in this paper are

gathered on the single-core platform. Most system components

implemented on the GPU, such as grayscale conversion and

JND-based image enhancement, are boosted in terms of time

efficiency by over 10 times compared with their counterparts

in CPU-based implementation. The bottleneck of our current

system is the resizing of each video frame, which usually

consumes over 60% of the overall execution time in contrast

to 6% ∼ 8% of the JND computation and 10% ∼ 12% of

the edge detector convolution. This is because the compaction

of an image after removing a vertical or horizontal seam is

only row-wise or column-wise parallelizable but not pixel-

wise. Besides, the GPU also suffers from the fact that the

memory transactions of moving data to fill the removed seam

are hardly coalesced such that its Single-Instruction-Multiple-

Data (SIMD) feature can not be fully utilized. We believe

that a more sophisticated implementation may overcome this

bottleneck by virtually resizing the images with a mask

indicating the new positions of surviving pixels.

A. Progressive Image Resizing

We first test the performance of the three resizing methods

with progressive image retargeting. This experiment progres-

sively resizes image from 640× 512 to 512× 409, 512× 409
to 409×327, 409×327 to 327×216, 327×216 to 216×208,

216 × 208 to 208 × 166, 208 × 166 to 166 × 132, 166 × 132
to 132 × 105, and 132 × 105 to 105 × 84, respectively.

Fig. 9 shows the computational performance of progressive

image resizing of the original seam carving, and the proposed

method. The execution time of the original seam carving

ranges from 1.97s to 0.094s, whereas the proposed method

ranges from 0.53s to 0.046s in a CPU-based implementation.

8

TABLE I
PERFORMANCE OF RETARGETING VARIOUS TEST VIDEO SEQUENCES.

Akiyo(176x144) Nemo(320x240) Panda(400x300) Panda(512x384) Sport(608x336)
88x144 117x144 160x240 213x240 200x300 267x300 256x384 342x384 304x336 405x336

Seam Carving (sec) 18.91 12.81 53.91 35.78 89.17 60.29 151.1 101.04 166.31 113.33

Proposed (sec) 7.55 4.97 13.94 9.14 20.94 12.67 31.22 20.23 29.11 19.75

Proposed+Dual (sec) 5.74 3.72 10.63 7.08 16.25 9.94 23.99 15.24 28.2 18.63

Proposed+GPU (sec) 1.14 0.81 3.05 2.2 5.34 3.81 9.03 6.66 9.36 6.81

Proposed+GPU (fps) 87.72 123.46 32.79 45.45 18.73 26.25 11.07 15.02 10.68 14.68

0.0

0.5

1.0

1.5

2.0

Seam Carving

Proposed

Proposed + GPU

512x409 409x327 327x261 261x208 208x166 166x132 132x105 105x84

Time (seconds)

Target Image Size

Fig. 9. Progressive image resizing.

0

1

2

3

4

5

6

Seam Carving

Proposed

Proposed + GPU

512x409 409x327 327x261 261x208 208x166 166x132 132x105 105x84

Time (seconds)

Target Image Size

Fig. 10. Computation time of one-step image resizing.

With GPU acceleration, the computational time can be im-

proved to the range from 0.234s to 0.062s. It is obvious that

the proposed algorithm significantly improves the performance

of the original seam carving algorithm. For large-size images,

the GPU implementation can speed up more than twice. The

execution time of the warping-based method ranges from

42.08s to 0.58s, which are evaluated by the Matlab program

of our implementation. Although the development tool and

implementation details may affect the time efficiency, the

warping-based method is generally slower than carving-based

methods since it involves in solving a large and sparse linear

system.

B. One-Step Image Resizing

In our experiment of one-step image resizing, a 640 × 512
image is resized to 512×409, 409×327, 327×216, 216×208,

208 × 166, 166 × 132, 132 × 105 and 105 × 84 directly,

as illustrated in Fig. 10. The execution time of the original

seam carving method ranges from 1.97s to 5.05s, whereas

the proposed method is from 0.53s to 1.61s. With GPU

implementation, the execution time is improved to be from

0.22s to 0.58s. The warping-based method took about 42s to

resize the test image to different resolutions. Since the size of

the sparse linear system is determined by the original image

size, it takes the same computational effort no matter what

the target size is. One can easily see that the seam carving

based methods are much more efficient than the warping-

based method, especially for small-scale image resizing. The

proposed method benefits in time efficiency with the aid of

GPU implementation. However, it is not straightforward for

warp-based method to exploit parallel computing.

C. Video Retargeting

For the execution time of video retargeting, we compare

our algorithm with the image-based seam carving scheme.

Experiments on a dual-core PC platform are also examined

to compare with the results of GPU implementation. Table I

shows the results of the execution time of different sequences

which all contain 100 frames. For most sequences, the pro-

posed algorithm is about four times faster than the original

seam carving for video retargeting. The performance on dual-

core is about 1 to 2 second faster than the same method on

a single-core platform. The overall performance in the GPU

implementation is further improved to be 2 to 4 times faster

than the same algorithm on a dual-core platform. For a video

of size 320 × 240, to reduce to a half size in one direction,

it can operate at 32.79 frames per second (fps). For an video

of size 400 × 300, to reduce the width by one-third also can

be accomplished in real-time with 26.25 fps. According to the

results shown in Rubinstein’s work [4], the precalculation of

video with resolution 400 × 300 and 400 frames takes about

10 to 20 minutes for 50 to 150 percent resizing. This means

the computational performance of the work in [4] is at most

0.7 fps.

Fig. 11(a) shows the results from the sequence “Akiyo”. In

the original method by Wolf et al. [1], they combine face de-

tection and motion estimation to compensate for the shortage

of the gradient saliency measure. Without additional high-level

image cues used in [1], the proposed method maintains better

foreground object shape, like human face and wider body

area. In the proposed method, we did not use other high-level

image saliency measures. With the JND-based importance

enhancement, foreground objects can be well retained, thus

making the whole frame more consistent with HVS. Fig. 11(b)

shows a frame from “Kung Fu Panda” and its resized images.

With the proposed method, the distance between two animals

9

Original Image

Scale Seam Carving

Wolf et al. Our result

(a)

Original Image

Scale Seam Carving

Wolf et al. Our result

(b)

Fig. 11. Video retargeting results of (a) “Akiyo” and (b) “Kung Fu Panda”. For both examples, the top-left images are the result of bicubic interpolation.
The bottom-left images are the results of Wolf et al [1]. The image-based seam carving results are depicted in the top-right and the results of the proposed
fast video carving algorithm are shown in the bottom-right.

shrinks and larger foreground object are well kept in the frame

than those obtained by using the bicubic interpolation and

the algorithm by Wolf et al [1]. Note that, the image-based

seam carving works well for image resizing but creates serious

artifacts without considering the temporal coherence in video

retargeting. The work by Rubinstein et al. [4] improved the

quality of video retargeting, but their algorithm is not efficient

for real-time applications. Please see the video carving process

and more comparisons in the supplemental material available

at http://cv.cs.nthu.edu.tw/research/Video/CSVT-demo.wmv.

IX. CONCLUSION

To summarize, we present a fast seam carving algorithm

for real-time video retargeting in this paper, which contains

the following three contributions. Firstly, a fast seam carving

algorithm that exploits local minimal property of multiple local

seams is proposed to greatly speedup the original algorithm.

Secondly, we introduce a JND model to enhance important

pixels in an image based on HVS. Thirdly, we extend the

proposed fast seam carving algorithm to video retargeting by

considering temporal coherence.

We demonstrated that the proposed algorithm is highly

parallelizable and can be further improved with a GPU

implementation. Although we adapted GPU to evaluate the

performance of the proposed method in this paper, we be-

lieve that the proposed method is also very suitable to be

used on other embedded systems. The highly parallelizable

image resizing operator and data independent property of our

method can benefit from the SIMD functionality found in

many of the existing embedded platforms. There are many

possible extensions based on this work. Since the warping-

based and seam-based approaches have their own advantages,

we would like to explore the possibility of combining warping,

seam carving and scaling appropriately to achieve better

image/video resizing in the future.

REFERENCES

[1] L. Wolf, M. Guttmann, and D. Cohen-Or, “Non-homogeneous content-
driven video-retargeting,” in Proceedings of International Conference on

Computer Vision (ICCV’07), 2007.

[2] S. Avidan and A. Shamir, “Seam carving for content-aware image
resizing,” ACM Trans. Graph., vol. 26, no. 3, p. 10, 2007.

[3] Owens, D. John, Luebke, David, Govindaraju, Naga, Harris, Mark,
Kruger, Jens, Lefohn, E. Aaron, Purcell, and J. Timothy, “A survey of
general-purpose computation on graphics hardware,” Computer Graph-

ics Forum, vol. 26, no. 1, pp. 80–113, 2007.
[4] M. Rubinstein, A. Shamir, and S. Avidan, “Improved seam carving for

video retargeting,” ACM SIGGRAPH, vol. 27, no. 3, pp. 1–9, 2008.
[5] F. Liu and M. Gleicher, “Automatic image retargeting with fisheye-view

warping,” in Proceedings of ACM symposium on User interface software

and technology, 2005, pp. 153–162.
[6] Y.-S. Wang, C.-L. Tai, O. Sorkine, and T.-Y. Lee, “Optimized scale-and-

stretch for image resizing,” ACM SIGGRAPH, pp. 1–8, 2008.
[7] N. Goodnight, C. Woolley, G. Lewin, D. Luebke, and G. Humphreys,

“A multigrid solver for boundary value problems using programmable
graphics hardware,” in Proc. of Graphics hardware, 2003.

[8] G. Shen, G.-P. Gao, S. Li, H.-Y. Shum, and Y.-Q. Zhang, “Accelerate
video decoding with generic gpu,” IEEE Trans. on CSVT, vol. 15, pp.
685–693, 2005.

[9] M. Gong and Y.-H. Yang, “Near real-time reliable stereo matching using
programmable graphics hardware,” in Proc. of Computer Vision and

Pattern Recognition (CVPR), 2005, pp. 924–931.
[10] K. Moreland and E. Angel, “The fft on a gpu,” in HWWS ’03:

Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware, 2003, pp. 112–119.
[11] Y. Luo and R. Duraiswami, “Canny edge detection on nvidia cuda,” in

Proc. of CVPR Workshops, 2008, pp. 1–8.
[12] J. Li and J. Z. Wang, “Automatic linguistic indexing of pictures by a

statistical modeling approach,” IEEE Trans. on Pattern Analysis and

Machine Intelligence, vol. 25, pp. 1075–1088, 2003.
[13] J. Z. Wang and G. Wiederhold, “Simplicity: Semantics-sensitive inte-

grated matching for picture libraries,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 23, pp. 947–963, 2001.
[14] N. S. Jayant, J. D. Johnston, and R. J. Safranek, “Signal compression

based on models of human perception,” in Proc. of the IEEE, 1993.
[15] C.-H. Chou and Y.-C. Li, “A perceptually tuned subband image coder

based on the measure of just-noticeable-distortion profile,” IEEE Trans.

on CSVT, pp. 467–476, 1995.
[16] R. J. Safrenek and J. D. Johnson, “A perceptually tuned sub-band

image coder with image dependent quantization and post quantization
data compression,” in Proc. of Int. Conf. Acoustics, Speech, and Signal

Processing (ICASSP89), 1989, pp. 1945–1948.
[17] X. Yang, W. Lin, Z. Lu, E. P. Ong, and S. Yao, “Motion-compensated

residue pre-processing in video coding based on just-noticeable-
distortion profile,” IEEE Trans. on CSVT, vol. 15, pp. 742–750, 2005.

[18] C.-H. Chou and C.-W. Chen, “A perceptually optimized 3-d subband
image codec for video communication over wireless channels,” IEEE

Trans. on CSVT, vol. 6, pp. 143–156, 1996.

