Game Programming

Bing-Yu Chen National Taiwan University

Game AI

- Search
- Path Finding
- Finite State Machines
- Steering Behavior

Search

Blind search

- Breadth-First Search
- Depth-First Search
- Heuristic search

Adversary search
 MinMax

Introduction to Search

- Using tree diagram (usually) to describe a search problem i = 0
 - Search starts
 - Node i
 - Goal
 - Goal node *g*
 - Successors
 - \Box $C_1, C_2, C_3...$
 - Depth
 - \Box d = 0, 1, 2, ...
- Search problem
 - Input
 - Description of the initial and goal nodes
 - □ A procedure that produces the successors of an arbitrary node

CI

- Output
 - A legal sequence of nodes starting with the initial node and ending with the goal node.

d = 2

d = 4

 C_3

 \boldsymbol{Q}

Search Examples in Traditional AI

- Game playing
 - Chess
 - Backgammon
- Finding a path to goal
 - The towers of Hanoi
 - Sliding tile puzzles
 - 8 puzzles
- Simply finding a goal
 - n-queens

Search Algorithm

- Set L to be a list of the initial nodes. At any given point in time, L is a list of nodes that have not yet been examined.
- If L is empty, failed. Otherwise, pick a node n from L.
- **3**. If *n* is the goal node, stop and return it and the path from the initial node to *n*.
- Otherwise, remove *n* from *L* and add to *L* all of *n*'s children, labeling each with its path from the initial node.
- 5. Return to Step 2.

Depth-First Search

- Always exploring the child of the most recently expanded node
- Terminal nodes being examined from left to right
- If the node has no children, the procedure backs up a minimum amount before choosing another node to examine.

Depth-First Search

- We stop the search when we select the goal node g.
- Depth-first search can be implemented by pushing the children of a given node onto the front of the list *L* in Step 4. of <u>Search Algorithm</u>.
- And always choosing the first node on *L* as the one to expand.

Depth-First Search Algorithm

- 1. Set *L* to be a list of the initial nodes.
- 2. If *L* is empty, failed. Otherwise, pick a node *n* from *L*.
- 3. If *n* is the goal node, stop and return it and the path from the initial node to *n*.
- Otherwise, remove *n* from *L* and add to the front of *L* all of *n*'s children, labeling each with its path from the initial node.
- 5. Return to Step 2.

Breadth-First Search

The tree examined from top to down, so every node at depth *d* is examined before any node at depth *d* + *1*.

We can implement breadth-first search by adding the new nodes to the end of the list *L*.

Breadth-First Search Algorithm

- 1. Set *L* to be a list of the initial nodes.
- 2. If *L* is empty, failed. Otherwise, pick a node *n* from *L*.
- **3**. If *n* is the goal node, stop and return it and the path from the initial node to *n*.
- Otherwise, remove *n* from *L* and add to the end of *L* all of *n*'s children, labeling each with its path from the initial node.
- 5. Return to Step 2.

Heuristic Search

Neither depth-first nor breadth-first search

d = 1

d=2

d = 3

d = 4

11

- Exploring the tree in anything resembling an optimal order¹
- Minimizing the cost to solve the problem.

Heuristic Search

When we picking a node from the list *L* in Step 2. of <u>Search Algorithm</u>, what we will do is to remove steadily from the root node toward the goal by always selecting a node that is as close to the goal as possible.

Estimated by distance and minimizing the cost?

□ A* !

Adversary Search

□ Assumptions

- Two-person games in which the players alternate moves.
- They are games of "perfect" information, where the knowledge available to each player is the same.

Examples :

- Tic-tac-toe
- Checkers
- Chess
- Go
- Othello
- Backgammon
- Imperfect information
 - Pokers
 - Bridge

MinMax Idea

- 1. Expand the entire tree below *n*.
- 2. Evaluate the terminal nodes as wins for the minimizer or maximizer.
- 3. Select an unlabelled node all of whose children have been assigned values. If there is no such node, return the value assigned to the node *n*.
- 4. If the selected node is one at which the minimizer moves, assign it a value that is the minimum of the values of its children. If it is a maximizing node, assign it a value that is the maximum of the children's values. Return to Step 3.

MinMax Algorithm

- 1. Set $L = \{ n \}$, the unexpanded nodes in the tree.
- 2. Let **x** be the 1st node on **L**. If **x** = **n** and there is a value assigned to it, return this value.
- 3. If **x** has been assigned a value v_x , let **p** be the parent of **x** and v_p the value currently assigned to **p**. If **p** is a minimizing node, set $v_p = \min(v_{p'}, v_x)$. If **p** is a maximizing node, set $v_p = \max(v_{p'}, v_x)$. Remove **x** from **L** and return to Step 2.
- 4. If *x* has not been assigned a value and is a terminal node, assign it the value 1 or -1 depending on whether it is a win for the maximizer or minimizer respectively. Assign *x* the value 0 if the position is a draw. Leave *x* on *L* and return to Step 2.
- 5. Otherwise, set v_x to be $-\infty$ if x is a maximizing node and $+\infty$ if x is a minimizing node. Add the children of x to the front of L and return to Step 2.

MinMax

Some issues

- Draw
- Estimated value e(n)
 - **e**(n) = 1 : the node is a win for maximizer
 - **e(n) = -1** : the node is a win for minimizer
 - **e(n) = 0** : that is a draw
 - **e**(n) = -1 ~ 1 : the others
- When to decide stop the tree expanding further ?

MinMax Algorithm

- 1. Set $L = \{ n \}$, the unexpanded nodes in the tree.
- 2. Let **x** be the 1st node on **L**. If **x** = **n** and there is a value assigned to it, return this value.
- 3. If **x** has been assigned a value v_x , let **p** be the parent of **x** and v_p the value currently assigned to **p**. If **p** is a minimizing node, set $v_p = \min(v_{p'}, v_x)$. If **p** is a maximizing node, set $v_p = \max(v_{p'}, v_x)$. Remove **x** from **L** and return to Step 2.
- 4. If *x* has not been assigned a value and is a terminal node, assign it the value 1 or -1 depending on whether it is a win for the maximizer or minimizer respectively. Assign *x* the value 0 if the position is a draw. Leave *x* on *L* and return to Step 2.
- Otherwise, set v_x to be -∞ if x is a maximizing node and +∞ if x is a minimizing node. Add the children of x to the front of L and return to Step 2.

MinMax Algorithm (final)

- 1. Set $L = \{ n \}$, the unexpanded nodes in the tree.
- 2. Let **x** be the 1st node on **L**. If **x** = **n** and there is a value assigned to it, return this value.
- 3. If **x** has been assigned a value v_x , let **p** be the parent of **x** and v_p the value currently assigned to **p**. If **p** is a minimizing node, set $v_p = \min(v_p, v_x)$. If **p** is a maximizing node, set $v_p = \max(v_p, v_x)$. Remove **x** from **L** and return to Step 2.
- If *x* has not been assigned a value and either *x* is a terminal node or *we have decided not to expand the tree further*, *compute its value using the evaluation function*. Leave *x* on *L* and return to Step 2.
- 5. Otherwise, set v_x to be $-\infty$ if x is a maximizing node and $+\infty$ if x is a minimizing node. Add the children of x to the front of L and return to Step 2.

Introduction to Path Finding

- A common situation of game AI
- Path planning
 - From start position to the goal
- Most popular technique
 - A* (A Star)
 - 1968
 - □ A search algorithm
 - □ Favorite teaching example : 15-pizzule
 - Algorithm that searches in a state space for the least costly path from start state to a goal state by examining the neighboring states

Dijkstra vs. A*

- Dijkstra: compute the optimal solution
- Diskstra: search space much larger than A*
- □ A*: simple
- □ A*: fast
- □ A*: "good" result
- A*: employ heuristic estimate to eliminate many paths with high costs -> speedup process to compute satisfactory "shortest" paths

A*: cost functions

- Goal: compute a path from a start point S to a goal point G
- Cost at point *n*:
 f(n) = g(n) + h(n)
- **g(n)**: distance from the start point **S** to the current point **n**
- □ **h(***n***)**: estimated distance from the current point *n* to the goal point *G*
- □ **f(***n***)**: current estimated cost for point *n*

A*: cost functions

□ The role of **h(***n***)**

- A major cost evaluation function of A*
- Guide the performance of A*
- **d**(*n*): the actual distance between *S* and *G*
- h(n) = 0 : A* is equivalent to Dijkstra algorithm
- h(n) <= d (n) : guarantee to compute the shortest path; the lower the value h(n), the more node A* expands
- h(n) = d (n) : follow the best path; never expand anything else; difficult to compute h(n) in this way!
- h(n) > d(n) : not guarantee to compute a best path; but very fast
- h(n) >> g(n) : h(n) dominates -> A* becomes the Best First Search

A* Algorithm

- Add **START** to **OPEN** list
- while OPEN not empty
- **get node** *n* from **OPEN** that has the lowest f(n)
- if *n* is **GOAL** then return path
- move *n* to **CLOSED**
- for each n' = CanMove(n, direction)
- $\Box \qquad calculate h(n')$
- if *n*' in **OPEN** list and new *n*' is not better, continue
- □ if *n*' in **CLOSED** list and new *n*' is not better, continue
- remove any *n*' from **OPEN** and **CLOSED**
- add *n* as *n*'s parent
- add *n*' to **OPEN**
- end for
- end while
- □ if we get to here, then there is No Solution

E	xamp	le			Straight-line distated to Bucharest	ance
					Arad	366
Or	adea				Bucharest	0
					Craiova	160
71/	\backslash		Neamt		Dobreta	242
Zerind 💭			LL_87		Eforie	161
75	\151			-1	Fagaras	178
	\backslash			51	Giurgiu	77
		iu _		2	Hirsova	151
118		Fagara	as 🔨	\ \	Iasi	226
110	8			问 Vaslui	Lugoj	244
	Rimnicu	Vilcea	/	/	Mehadia	241
	111		211 /1	42	Neamt	234
limisoara		97 Ditor	-+i		Oradea	380
				Hirsov	, Pitesti	98
Mak		146	85 98		Rimnicu Vilcea	193
меі			101 Urzicen	i	Sibiu	253
	75	138	Bucharest	80	Timisoara	329
Dob	reta 🗋 👘 👘		/90		Urziceni	80
	120	Craiova		Eforie	Vaslui	199
			Giurgiu		Zerind	374
						· ·

	A*	Exa	mple				Straight-line dista to Bucharest	ance
							Arad	366
	Oradea	a					Bucharest	0
							Craiova	160
	71			Nean	nt		Dobreta	242
Zerin	d 🟳 🛛 🔪				87		Eforie	161
	/75	151					Fagaras	178
Arad		\backslash			Lasi		Giurgiu	77
0+36	5	_ Sibi	u _		92		Hirsova	151
118	140		99 Faga	ras			Iasi	226
110		80			þ	Vaslui	Lugoj	244
		Rimnicu	Vilcea				Mehadia	241
[3,111			211	142		Neamt	234
HMISC	bara		97 Dite	acti	/	-	Oradea	380
	7					Hirsova	Pitesti	98
	/ Mehadi:		146		85 98	-Q	Rimnicu Vilcea	193
	ricitatio			101	Urziceni		Sibiu	253
	7	5	138	/Bu	ucharest	80	Timisoara	329
	Dobreta			/90		È	Urziceni	80
		120	Craiova		aiu	Eforie	Vaslui	199
				Giul	giù		Zerind	374

	A*	Exa	mple				Straight-line dista to Bucharest	ince
							Arad	366
	Oradea	a					Bucharest	0
							Craiova	160
75+3	74			Nea	mt		Dobreta	242
Zerin	d 🟳 🛛 🔪				87		Eforie	161
	/75	Har					Fagaras	178
Arad		140+	253				Giurgiu	77
0+36	6 140	Sib	iu		92		Hirsova	151
118	1.10		99 Faga	ras			Iasi	226
		80			ļ –	Vaslui	Lugoj	244
		Rimnicu	<u>V</u> ilcea	`			Mehadia	241
Timic	Jara 111		97	211	/142		Neamt	234
118+	329	Lugoi	Pite	esti			Oradea	380
IIO I	7	'0		\setminus		Hirsova	Pitesti	98
	Mehadia		146	101	85 98		Rimnicu Vilcea	193
			120		Urziceni	86	Sibiu	253
	7	5	130	B	ucharest		Timisoara	329
	Dobreta			/90		Ò	Urziceni	80
		120	-Craiova	D Giu	raiu	Eforie	Vaslui	199
				_ 514	9.4		Zerind	374

	A*	Exa	mple				Straight-line dista to Bucharest	ince
							Arad	366
	Oradea	a					Bucharest	0
							Craiova	160
75+3	74			Nean	nt		Dobreta	242
Zerin	d 🖵 🛛 🔪	1 = 1			87		Eforie	161
	/75	/J					Fagaras	178
Arad		140+	253				Giurgiu	77
0+36	6 140	Sibi	iu		92		Hirsova	151
118	10		99 Faga	ras			Iasi	226
		80			,	Vaslui	Lugoj	244
		Rimnicu	<u>Vilcea</u>	`			Mehadia	241
Timic	Jara 111		97	211	/142		Neamt	234
118+	379	Lugoi	Pite	esti			Oradea	380
I I O I	7	'0		$\langle \rangle$		Hirsova	Pitesti	98
	Mehadia		146	101	85 98		Rimnicu Vilcea	193
			120		Urziceni	86	Sibiu	253
	7	5	130	<u>B</u> u	ucharest		Timisoara	329
	Dobreta			/90		Ò	Urziceni	80
		120	-Craiova	ÓGiur	aiu	Eforie	Vaslui	199
					3.4		Zerind	374

	A*	Exa	mple				Straight-line dista to Bucharest	ance
	- ·						Arad	366
	Oradea	3					Bucharest	0
		1+380					Craiova	160
75+32	74			Neamt			Dobreta	242
Zerino					7		Eforie	161
	75	721					Fagaras	178
Arad		140+3	253				Giurgiu	77
0+366	5 140	Sibi	u 239+1	.76	92		Hirsova	151
118	1-10		<u> </u>	as			Iasi	226
		220 81				/aslui	Lugoj	244
		Rimnicu	yilcea				Mehadia	241
] Timico	111	Let a let		211	/142		Neamt	234
118+7	279	Lugoi	Pite	sti			Oradea	380
I I U I I	7 7	0				Hirsova	Pitesti	98
	Mehadia		146	101 85		Q	Rimnicu Vilcea	193
		- - -			Urziceni	06	Sibiu	253
	7	5	130	Bucha	arest		Timisoara	329
	Dobreta			/90		Ò	Urziceni	80
		120	-Craiova	Giuraiu		Eforie	Vaslui	199
				Giulgiu			Zerind	374

	A*	Exa	mple				Straight-line dista to Bucharest	ance
							Arad	366
	Oradea	3					Bucharest	0
		1+380					Craiova	160
75+37	74			Neamt			Dobreta	242
Zerind					37		Eforie	161
	75	121					Fagaras	178
Arad		140+3	253				Giurgiu	77
0+366	5 140	Sibi	u 239+1	176	92		Hirsova	151
118	1-10		<u> </u>	as	\backslash		Iasi	226
		22089				/aslui	Lugoj	244
		Rimnicu	yilcea				Mehadia	241
] Timico	111			211	/142		Neamt	234
118130	270		Pite	sti			Oradea	380
1101.	7 2 3	n lago,				Hirsova	Pitesti	98
	Mehadia		146	101 85		-Q	Rimnicu Vilcea	193
	- ionaan	- L			Urziceni	06	Sibiu	253
	7	5	138	Buch	arest		Timisoara	329
	Dobreta			/90			Urziceni	80
		120	-Craiova	Giuraiu		Eforie	Vaslui	199
				Gluigiu			Zerind	374

	A*	Exa	mple			Straight-line dista to Bucharest	ance
						Arad	366
	Oradea					Bucharest	0
		1+380				Craiova	160
75+32	74			Neamt		Dobreta	242
Zerino	\ 🗘 🗘			87		Eforie	161
	75	H2T				Fagaras	178
Arad		140+2	53			Giurgiu	77
0+366	5 140	Sibi	u 239+1	76	92	Hirsova	151
118	L TV		99 Fagar	as	\backslash	Iasi	226
		220.80			Vaslui	Lugoj	244
		Rimnicu	/ilcea			Mehadia	241
L Timiso	J 111		97	211	142	Neamt	234
118+7	329	Lugoi	Pite	sti		Oradea	380
11010	7	'Q			oo Hirso	_{/a} Pitesti	98
	Mehadia		¹⁴⁶ 317+	100 85		Rimnicu Vilcea	193
		Ţ	120			Sibiu	253
	7	5	130	Buchare	st 🔰	Timisoara	329
	Dobreta		- H	/90		Urziceni	80
		120	Craiova	Giuraiu	Efori	^e Vaslui	199
			200+100	Sidigid		Zerind	374

	A*	Exa	mple				Straight-line dista to Bucharest	ance
							Arad	366
	Oradea	3					Bucharest	0
		1+380					Craiova	160
75+37	74			Neamt			Dobreta	242
Zerino					7		Eforie	161
	75	121					Fagaras	178
Arad		140+2	253		Tasi		Giurgiu	77
0+366	5 140	Sibi	u 239+1	.76	92		Hirsova	151
118	1-10		<u>99</u> Fagar	as	\backslash		Iasi	226
		220 80	0.2		D Va	slui	Lugoj	244
		Rimnicu	Vilcea				Mehadia	241
] Timico	111			211	/142		Neamt	234
118+7	279	Lugoi	Pite	sti			Oradea	380
I I U I I	7 7	<u>'</u>				rsova	Pitesti	98
	Mehadia		146 317+	100 85			Rimnicu Vilcea	193
			420		Urziceni	96	Sibiu	253
	7	5	130	Bucha	rest		Timisoara	329
	Dobreta		- <u> </u>	/90		È	Urziceni	80
		120	-Craiova	Giuraiu	E	torie	Vaslui	199
			300+100	Giurgiu			Zerind	374
								_

	A*	Exa	mple			Straight-line dista to Bucharest	ance
						Arad	366
	Oradea					Bucharest	0
		1+380				Craiova	160
75+37	74			Neamt		Dobreta	242
Zerind				87		Eforie	161
	75	121			ci	Fagaras	178
Arad		140+2	53		21	Giurgiu	77
0+366	5 140	Sibi	u 239+17	6	2	Hirsova	151
118	1-10		99 Fagara	S \	\backslash	Iasi	226
		220 80			Vaslui	Lugoj	244
		Rimnicu	Vilcea	/	/	Mehadia	241
[Timico	J 111	Ļ		211 /1	42	Neamt	234
118+7	270	Lugoi	Pites	ti /		Oradea	380
IIU II	7 7	<u>'</u>			Hirsova	Pitesti	98
	Mehadia		317+1	00 85 🗖 🦻		Rimnicu Vilcea	193
				Urzicen		Sibiu	253
	7	5	138	Bucharest	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Timisoara	329
	Dobreta		- H	/ ₉₀ 450+0		Urziceni	80
		120	-Craiova	Giuraiu	Eforie	Vaslui	199
			300+100			Zerind	374
	A* Example			Straight-line distance to Bucharest			
-------------	------------	------------	-----------------	-------------------------------------	----------	-----------------------	-----
						Arad	366
	Oradea					Bucharest	0
		1+380				Craiova	160
75+37	74			Neamt		Dobreta	242
Zerind				87		Eforie	161
	75	121				Fagaras	178
Arad		140+3	253			Giurgiu	77
0+366	5 140	Sibi	u <u>239+17</u>	'6 92	2	Hirsova	151
118	1-10		99 Fagara	S \		Iasi	226
		220 80			Vaslui	Lugoj	244
		Rimnicu	Vilcea	/		Mehadia	241
[Timico	ara 111		07	211 /14	2	Neamt	234
118130	270		Pites	ri /		Oradea	380
LIOIS	7 23	'n			Hirsova	Pitesti	98
	Mehadia		317+1	00 85	—Ų	Rimnicu Vilcea	193
		- L		Urziceni	06	Sibiu	253
	7	5	138	Bucharest		Timisoara	329
	Dobreta			∕ <mark>90</mark> 450+0	<u> </u>	Urziceni	80
		120	Craiova	Giuraiu	Eforie	Vaslui	199
			366+160	Siurgiu		Zerind	374

	A* Example				Straight-line distance to Bucharest		
						Arad	366
	Oradea	3				Bucharest	0
		1+380				Craiova	160
75+37	74			Neamt		Dobreta	242
Zerind				87		Eforie	161
	/75	HPT -			Taci	Fagaras	178
Arad		140+	253			Giurgiu	77
0+366	5 140	Sibi	iu 239+17	76	92	Hirsova	151
118	110		<u>99</u> Fagara	S		Iasi	226
		22086			Vaslui	Lugoj	244
		Rimnicu	Vilcea			Mehadia	241
L	ara 111		97	211	142	Neamt	234
118+7	279	Lugoi	Pites	ti		Oradea	380
11010	7 7	'O			oo Hirsov	Pitesti	98
	Mehadia		146 317+1		98	Rimnicu Vilcea	193
			120			Sibiu	253
	7	5	130	Buchares	t 🔨	Timisoara	329
	Dobreta		- M	/90 450+0		Urziceni	80
		120	Craiova	∕ 418+0 □Giuraiu	Eforie	Vaslui	199
			300+100	- Grangia		Zerind	374

	A*	Exa	mple			Straight-line distated to Bucharest	ance
						Arad	366
	Oradea	3				Bucharest	0
		1+380				Craiova	160
75+37	74			Neamt		Dobreta	242
Zerind				87		Eforie	161
	/75	HOT				Fagaras	178
Arad		140+	253			Giurgiu	77
0+366	5 140	Sibi	iu 239+17	76	92	Hirsova	151
118	10		<u>99</u> Fagara	IS	\backslash	Iasi	226
		22086			Vaslui	Lugoj	244
		Rimnicu	Vilcea			Mehadia	241
L Timiso	ara 111		97	211	/142	Neamt	234
118+3	279	Lugoi	Pites	ti		Oradea	380
11010	7 7	0			oo Hirso	_{/a} Pitesti	98
	Mehadia		146 317+	85	98	Rimnicu Vilcea	193
			120			Sibiu	253
	7	5	130	Buchares	st 👋	Timisoara	329
	Dobreta		- <u> </u>	/90 450+0		Urziceni	80
		120	Craiova	418+0	Efori	^e Vaslui	199
			300+100			Zerind	374

A* Algorithm

State

- Location
- Neighboring states
- Search space
 - Related to terrain format
 - Grids
 - Triangles or Convex Polygons
 - Points of Visibility
- Cost estimate
- Path
 - Typical A* path
 - Straight path
 - Smooth path
- Hierarchical path finding

Search Space & **Neighboring States**

- Rectangular Grid
 - Use grid center
- Quadtree
 - Use grid center
- Triangles or **Convex Polygons**
 - Use edge midpoint
 - Use triangle center

43

Search Space & Neighboring States

- Points of Visibility (POV)
- Generalized cylinders
 - Use intersections

Points of Visibility

Generalized Cylinders 44

Cost Estimate

- Cost function
 - CostFromStart
 - CostToGoal
- Minimum cost
 - Distance traveled
 - Time of traveled
 - Movement points expended
 - Fuel consumed
 - Penalties for passing through undesired area
 - Bonuses for passing through desired area
- Estimate
 - To goal "distance"

Result Path

Hierarchical Path Finding

- Break the terrain for path finding to several ones hierarchically
 - Room-to-Room
 - 3D layered terrain
 - Terrain LOD
- Pros
 - Speedup the search
 - Solve the problem of layered path finding

Path Finding Challenges

Moving Goal

- Do you need to find path each frame ?
- Moving Obstacles
 - Prediction Scheme
- Complexity of the Terrain
 - Hierarchical path finding
- Good" Path

Introduction to FSM

- Finite State Machine (FSM) is the most commonly used game AI technology today.
 - Simple
 - Efficient
 - Easily extensible
 - Powerful enough to handle a wide variety of situations
- Theory (simplified)
 - A set of states, S
 - An input vocabulary, I
 - Transition function, T(s, i)
 - Map a state and an input to another state

Introduction to FSM

Practical use

- State
 - Behavior
- Transition
 - Across states
 - Conditions
- It's all about driving behavior
- Flow-chart diagram
 - UML State chart
 - □ Arrow
 - Transition
 - Rectangle
 - State

FSM for Games

- Character AI
- "Decision-Action" model
- Behavior
 - Mental state
- Transition
 - Players' action
 - The other characters' actions
 - Some features in the game world

Implement FSM

Code-based FSM

- Simple Code One Up
 - Straightforward
 - Most common
- Macro-assisted FSM Language
- Data-Driven FSM
 - FSM Script Language

Coding an FSM – Code Example

<pre>void RunLogic(int *state) {</pre>
switch(*state) {
case 0: // Gather Treasure
GatherTreasure();
if (SeeMonster()) *state = 1;
break;
case 1: // Flee
Flee();
if (!SeeMonster()) *state = 0;
if (Cornered()) *state = 2;
break;
case 2: // Fight
Fight();
if (!SeeMonster()) *state = 0;
break;
}
}

FSM Language Use Macros

- Coding a state machine directly causes lack of structure
 - Going complex when FSM at their largest
- Use macros
- Beneficial properties
 - Structure
 - Readability
 - Debugging
- Simplicity

FSM Language Use Macros – An Example

#define BeginStateMachine
#define State(a)
<pre>bool MyStateMachine::States(StateMachineEvent event, int state) {</pre>
BeginStateMachine
State(0)
OnUpdate
GatherTreasure();
if (SeeMonster()) SetState(1);
State(1)
OnUpdate
Flee();
SetState(0);
if (!SeeMonster()) SetState(0);
if (Cornered()) SetState(2);
State(2);
OnUpdate
if (!SeeMonster()) SetState(0);
EndStateMachine
}

Data-Driven FSM

- Scripting language
 - Text-based script file
 - Transformed into
 - □ C++
 - Integrated into source code
 - Bytecode
 - Interpreted by the game
- Authoring
 - Compiler
 - AI editing tool
- 🗖 Game
 - FSM script engine
 - FSM interface

Data-Driven FSM Diagram

AI Editing Tool for FSM

- Pure text
 - Syntax ?
- Visual graph with text
- Used by Designers, Artists, or Developers
 - Non-programmers
- Conditions & action vocabulary
 - SeeMonster
 - Cornered

FSM Interface

- Facilitating the binding between vocabulary and game world
- Glue layer that implements the condition & action vocabulary in the game world
- Native conditions
 - SeeMonster(), Cornered()
- Action library
 - Fight(...)

FSM Script Language Benefits

- Accelerated productivity
- Contributions from artists & designers
- Ease of use
- Extensibility

Processing Models for FSMs

Processing the FSMs

- Evaluate the transition conditions for current state
- Perform any associated actions
- □ When and how ?
 - Depend on the exact need of games
- Three common FSM processing models
 - Polling
 - Event-driven
 - Multithread

Polling Processing Model

- Processing each FSM at regular time intervals
 - Tied to game frame rate
 - Or some desired FSM update frequency
 - Limit one state transition in a cycle
 - Give a FSM a time-bound
- Pros
 - Straightforward
 - Easy to implement
 - Easy to debug
- Cons
 - Inefficiency

Some transition are not necessary to check every frame

Careful design to your FSM

Event-driven Processing Model

- Designed to prevent from wasted FSM processing
- An FSM is only processed when it's relevant
- Implementation
 - A Publish-subscribe messaging system (Observer pattern)
 - Allows the engine to send events to individual FSMs
 - An FSM subscribes only to the events that have the potential to change the current state
 - When an event is generated, the FSMs subscribed to that events are all processed
- "As-needed" approach
 - Should be much more efficient than polling ?
- Tricky balance for fine-grained or coarse-grained events

Multithread Processing Model

- Both polling & event-driven are serially processed
- Multithread processing model
 - Each FSM is assigned to its own thread for processing
 - Game engine is running in another separate thread
 - All FSM processing is effectively concurrent and continuous
 - Communication between threads must be thread-safe
 Using standard locking & synchronization mechanisms
- Pros
 - FSM as an autonomous agent who can constantly and independently examine and react to his environment
- Cons
 - Overhead when many simultaneous characters active
 - Multithreaded programming is difficult

FSM Efficiency & Optimization

Two categories :

- Time spent
- Computational cost
- Scheduled processing
 - Priority for each FSM
 - Different update frequency
- Load balancing scheme
 - Collecting statistics of past performance & extrapolating
- Time-bound for each FSM
- Do careful design
 - At the design level
- Level-of-detail FSMs

Level-Of-Detail FSMs

- Simplify the FSM when the player won't notice the differences
 - Outside the player's perceptual range
 - Just like the LOD technique used in 3D game engine
- □ Three design keys :
 - Decide how many LOD levels
 - □ How much development time available ?
 - The approximation extent
 - LOD selection policy
 - □ The distance between the NPC with the player ?
 - □ If the NPC can "see" the player ?
 - Be careful the problem of "visible discontinuous behavior"
 - What kind of approximations
 - Cheaper and less accurate solution

A Hierarchical FSM Example

Motion Behavior

Action selection Steering Locomotion Action Selection: strategy, goals, planning Steering: path determination Locomotion: animation, articulation

A Hierarchy of Motion Behavior

Action Selection

- Game AI engine
 - State machine
 - Discussed in "Finite State Machine" section
 - Goals
 - Planning
 - Strategy
- Scripting
- Assigned by players
 - Players' input

Steering

Path determination

- Path finding or path planning
- Discussed in "Path Finding"

Behaviors

- Seek & flee
- Pursuit & evasion
- Obstacle avoidance
- Wander
- Path following
- Unaligned collision avoidance
- Group steering

Locomotion

- Character physically-based models
- Movement
 - Turn right, move forward, …
- Animation
 - By artists
- Implemented / managed by game engine

A Simple Vehicle Model

□ A point mass

- Linear momentum
- No rotational momentum
- Parameters
 - Mass
 - Position
 - Velocity
 - Modified by applied forces
 - Max speed
 - Top speed of a vehicle
 - Max steering force
 - Self-applied
 - Orientation

🛛 Car

Aircraft

A Simple Vehicle Model

- Local space
 - Origin
 - Forward
 - 🛛 Up
 - Side
- Steering forces
 - Asymmetrical
 - Thrust
 - Braking
 - Steering
- Velocity alignment
 - No slide, spin, ...
 - Turn

Seek & Flee Behaviors

Arrival Behavior

- Identical to "Seek" while the character is far from its target
- Slow down as approaching the target, eventually slowing to a stop coincident with the target
- The desired velocity is clipped to max_speed outside the stopping radius, and inside it is ramped down (e.g. linearly) to zero.

Pursuit & Evasion Behaviors

- Target is moving
- Apply seek or flee to the target's predicted position
- Estimate the prediction interval T
 - T = Dc
 - D = distance(pursuit, quarry)
 - c = turning parameter
- Variants
 - Offset pursuit "Fly by"

quarry now pursuit evasion

Offset Pursuit Behavior

- Passes near, but not directly into a moving target
- Flying near enough to be within weapon range without colliding with the target

Compute a target point given a radius R from the target's predicted position, and seek the point

Obstacle Avoidance Behavior

- Use bounding sphere
- Not collision detection
- Probe
 - A cylinder lying along forward axis
 - Diameter = character's bounding sphere
 - Length = speed (means Alert range)
- Find the most threaten obstacle
 - Nearest intersected obstacle
- □ Steering

steering force

Wander Behavior

- Random steering
- One solution :
 - Retain steering direction state
 - Constrain steering force to the sphere surface located slightly ahead of the character
 - Make small random displacements to it each frame
 - A small sphere on sphere surface to indicate and constrain the displacement
- Another one :
 - Perlin noise
- Variants
 - Explore

Path Following Behavior

- The path
 - Spine
 - □ A spline or poly-line to define the path
 - Pipe
 - □ The tube or generated cylinder by a defined "radius"
- Following
 - A velocity-based prediction position
 - Inside the tube
 - Do nothing about steering
 - Outside the tube
 - "Seek" to the on-path projection

wall following

- Variants
 Wall following
 - Containment

Flow Field Following Behavior

- □ A flow field environment is defined.
- Virtual reality
 - Not common in games

Unaligned Collision Avoidance Behavior

- Turn away from possible collision
- Predict the potential collision
 - Use bounding spheres
- If possibly collide,
 - Apply the steering on both characters
 - Steering direction is possible collision result
 - Use "future" possible position
 - The connected line between two sphere centers

Steering Behaviors for Groups of Characters

- Steering behaviors determining how the character reacts to the other characters within his/her local neighborhood
- □ The behaviors including :
 - Separation
 - Cohesion
 - Alignment

The Local Neighborhood of a Character

□ The local neighborhood is defined as :

- A distance
- The field-of-view
 - □ Angle

The Neighborhood 94

Separation Behavior

- Make a character to maintain a distance from others nearby.
 - Compute the repulsive forces within local neighborhood

Calculate the position vector for each nearby

Normalize it

- Weight the magnitude with distance
 - 1/distance
- Sum the result forces

Negate it

Cohesion Behavior

- Make a character to cohere with the others nearby
 - Compute the cohesive forces within local neighborhood
 - Compute the average position of the others nearby
 - Gravity center
 - Apply "Seek" to the position

Alignment Behavior

- Make a character to align with the others nearby
 - Compute the steering force
 - Average the together velocity of all other characters nearby
 - The result is the desired velocity
 - Correct the current velocity to the desired one with the steering force

Flocking/Crowd Behavior

- "Boids Model of Flocks"
 - [Reynolds 87]
- Combination of :
 - Separation steering
 - Cohesion steering
 - Alignment steering
- □ For each combination including :
 - A weight for each combination
 - A distance
 - An Angle

Leader Following Behavior

Follow a leader

- Stay with the leader
 - "Pursuit" behavior (Arrival style)
- Stay out of the leader's way
 - Defined as "next position" with an extension
 - "Evasion" behavior when inside the above area
- "Separation" behavior for the followers

Behavior Conclusion

- A simple vehicle model with local neighborhood
- Common steering behaviors including :
 - Seek
 - Flee
 - Pursuit
 - Evasion
 - Offset pursuit
 - Arrival
 - Obstacle avoidance

- Wander
- Path following
- Wall following
- Containment
- Flow field following
- Unaligned collision avoidance
- Separation
- Cohesion
- Alignment
- Flocking
- Leader following

More Topics in Game AI

- Scripting
- Goal-based planning
- Rule-based inference engine
- Neural network
- References
 - Game Programming Gems
 - AI Game Programming Wisdom