
Game Programming

Bing-Yu Chen
National Taiwan University

Game AI

Search
Path Finding
Finite State Machines
Steering Behavior

1

Search

Blind search
Breadth-First Search
Depth-First Search

Heuristic search
A*

Adversary search
MinMax

2

Introduction to Search
Using tree diagram (usually) to describe a search
problem

Search starts
Node i

Goal
Goal node g

Successors
c1, c2, c3…

Depth
d = 0, 1, 2, …

Search problem
Input

Description of the initial and goal nodes
A procedure that produces the successors of an arbitrary node

Output
A legal sequence of nodes starting with the initial node and
ending with the goal node.

3

i

g

c1 c2 c3

d = 1

d = 2

d = 3

d = 4

Search Examples
in Traditional AI

Game playing
Chess
Backgammon

Finding a path to goal
The towers of Hanoi
Sliding tile puzzles

8 puzzles

Simply finding a goal
n-queens

4

Search Algorithm
1. Set L to be a list of the initial nodes. At

any given point in time, L is a list of
nodes that have not yet been examined.

2. If L is empty, failed. Otherwise, pick a
node n from L.

3. If n is the goal node, stop and return it
and the path from the initial node to n.

4. Otherwise, remove n from L and add to
L all of n’s children, labeling each with
its path from the initial node.

5. Return to Step 2.

5

Depth-First Search
Always exploring the child of the most
recently expanded node
Terminal nodes being examined from
left to right
If the node has no
children, the procedure
backs up a minimum
amount before
choosing another
node to examine.

6

1

g

2 8 9

d = 1

d = 2

d = 3

d = 4

3

4
5 6

7 10

11

Depth-First Search

We stop the search when we select
the goal node g.
Depth-first search can be
implemented by pushing the children
of a given node onto the front of the
list L in Step 4. of Search Algorithm.
And always choosing the first node on
L as the one to expand.

7

Depth-First Search Algorithm
1. Set L to be a list of the initial nodes.
2. If L is empty, failed. Otherwise, pick a

node n from L.
3. If n is the goal node, stop and return it

and the path from the initial node to n.
4. Otherwise, remove n from L and add to

the front of L all of n’s children,
labeling each with its path from the
initial node.

5. Return to Step 2.

8

Breadth-First Search

The tree examined from top to down,
so every node at depth d is examined
before any node at depth d + 1.
We can implement
breadth-first search by
adding the new nodes
to the end of the
list L.

9

1

g

2 3 4

d = 1

d = 2

d = 3

d = 4

5

9
10 11

6 7

12

8

Breadth-First Search Algorithm
1. Set L to be a list of the initial nodes.
2. If L is empty, failed. Otherwise, pick a

node n from L.
3. If n is the goal node, stop and return it

and the path from the initial node to n.
4. Otherwise, remove n from L and add to

the end of L all of n’s children, labeling
each with its path from the initial node.

5. Return to Step 2.

10

Heuristic Search

Neither depth-first nor breadth-first
search
Exploring the tree in anything
resembling an optimal order.
Minimizing the cost to
solve the problem.

1111

1

g

2

d = 1

d = 2

d = 3

d = 4

3

4

Heuristic Search

When we picking a node from the list
L in Step 2. of Search Algorithm,
what we will do is to remove steadily
from the root node toward the goal
by always selecting a node that is as
close to the goal as possible.

Estimated by distance and minimizing
the cost?

A* !

12

Adversary Search
Assumptions

Two-person games in which the players alternate moves.
They are games of “perfect” information, where the
knowledge available to each player is the same.

Examples :
Tic-tac-toe
Checkers
Chess
Go
Othello
Backgammon

Imperfect information
Pokers
Bridge

13

MinMax

14

a

e

b c d

f g

h i j k

l m n o

p q r

max

min

max

min

max

min

-1 1 -1

1

1

-11

-1

1

-1

“ply”

Nodes with the
maximizer to move
are square; nodes
with the minimizer
to move are circles

Maximizer to achieve the
Outcome of 1; minimizer to
Achieve the outcome of -1

1

-1

MinMax

15

a

e

b c d

f g

h i j k

l m n o

p q r

max

min

max

min

max

min

-1 1 -1

1

1

-11

-1

1

-1

The maximizer wins!

1

1

1

1

1
-1

-1

-1

MinMax Idea
1. Expand the entire tree below n.
2. Evaluate the terminal nodes as wins for the

minimizer or maximizer.
3. Select an unlabelled node all of whose

children have been assigned values. If
there is no such node, return the value
assigned to the node n.

4. If the selected node is one at which the
minimizer moves, assign it a value that is
the minimum of the values of its children.
If it is a maximizing node, assign it a value
that is the maximum of the children’s
values. Return to Step 3.

16

MinMax Algorithm
1. Set L = { n }, the unexpanded nodes in the tree.
2. Let x be the 1st node on L. If x = n and there is a value

assigned to it, return this value.
3. If x has been assigned a value vx, let p be the parent of x

and vp the value currently assigned to p. If p is a
minimizing node, set vp = min(vp, vx). If p is a maximizing
node, set vp = max(vp, vx). Remove x from L and return to
Step 2.

4. If x has not been assigned a value and is a terminal node,
assign it the value 1 or -1 depending on whether it is a win
for the maximizer or minimizer respectively. Assign x the
value 0 if the position is a draw. Leave x on L and return to
Step 2.

5. Otherwise, set vx to be –∞ if x is a maximizing node and
+∞ if x is a minimizing node. Add the children of x to the
front of L and return to Step 2.

17

MinMax

Some issues
Draw
Estimated value e(n)

e(n) = 1 : the node is a win for maximizer
e(n) = -1 : the node is a win for minimizer
e(n) = 0 : that is a draw
e(n) = -1 ~ 1 : the others

When to decide stop the tree expanding
further ?

18

MinMax Algorithm
1. Set L = { n }, the unexpanded nodes in the tree.
2. Let x be the 1st node on L. If x = n and there is a value

assigned to it, return this value.
3. If x has been assigned a value vx, let p be the parent of x

and vp the value currently assigned to p. If p is a
minimizing node, set vp = min(vp, vx). If p is a maximizing
node, set vp = max(vp, vx). Remove x from L and return to
Step 2.

4. If x has not been assigned a value and is a terminal node,
assign it the value 1 or -1 depending on whether it is a win
for the maximizer or minimizer respectively. Assign x the
value 0 if the position is a draw. Leave x on L and return to
Step 2.

5. Otherwise, set vx to be –∞ if x is a maximizing node and
+∞ if x is a minimizing node. Add the children of x to the
front of L and return to Step 2.

19

MinMax Algorithm (final)
1. Set L = { n }, the unexpanded nodes in the tree.
2. Let x be the 1st node on L. If x = n and there is a

value assigned to it, return this value.
3. If x has been assigned a value vx, let p be the parent

of x and vp the value currently assigned to p. If p is a
minimizing node, set vp = min(vp, vx). If p is a
maximizing node, set vp = max(vp, vx). Remove x
from L and return to Step 2.

4. If x has not been assigned a value and either x is a
terminal node or we have decided not to expand the
tree further, compute its value using the evaluation
function. Leave x on L and return to Step 2.

5. Otherwise, set vx to be –∞ if x is a maximizing node
and +∞ if x is a minimizing node. Add the children of
x to the front of L and return to Step 2.

20

Introduction to Path Finding
A common situation of game AI
Path planning

From start position to the goal
Most popular technique

A* (A Star)
1968
A search algorithm
Favorite teaching example : 15-pizzule
Algorithm that searches in a state space for the
least costly path from start state to a goal state
by examining the neighboring states

21

Dijkstra vs. A*

22

Without
obstacle

With
obstacle

Dijkstra A*

Dijkstra vs. A*
Dijkstra: compute the optimal solution
Diskstra: search space much larger than A*
A*: simple
A*: fast
A*: “good” result
A*: employ heuristic estimate to eliminate
many paths with high costs -> speedup
process to compute satisfactory “shortest”
paths

23

A*: cost functions
Goal: compute a path from a start point
S to a goal point G

Cost at point n:
f(n) = g(n) + h(n)
g(n): distance from the start point S to
the current point n
h(n): estimated distance from the
current point n to the goal point G
f(n): current estimated cost for point n

24

A*: cost functions
The role of h(n)

A major cost evaluation function of A*
Guide the performance of A*

d(n): the actual distance between S and G
h(n) = 0 : A* is equivalent to Dijkstra algorithm
h(n) <= d (n) : guarantee to compute the shortest
path; the lower the value h(n), the more node A*
expands
h(n) = d (n) : follow the best path; never expand
anything else; difficult to compute h(n) in this way!
h(n) > d(n) : not guarantee to compute a best path;
but very fast
h(n) >> g(n) : h(n) dominates -> A* becomes the
Best First Search

25

A* Algorithm
Add START to OPEN list
while OPEN not empty

get node n from OPEN that has the lowest f(n)
if n is GOAL then return path
move n to CLOSED
for each n' = CanMove(n, direction)

g(n') = g(n) + 1
calculate h(n')
if n' in OPEN list and new n' is not better, continue
if n' in CLOSED list and new n' is not better, continue
remove any n' from OPEN and CLOSED
add n as n's parent
add n' to OPEN

end for
end while
if we get to here, then there is No Solution

26

Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

30

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind

71

75
151

140
118

111

70

75

120

138

146

97

80
99

211

101

90

85

87

92

142

98

86

80

140

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

31

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

80

140

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

32

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

75+374

140+253

118+329

80

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

33

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

140
118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

75+374

140+253

118+329

80

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

34

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

140
118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

75+374

140+253

118+329

239+176

220+193

291+380

80

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

35

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

140
118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

75+374

140+253

118+329

239+176

220+193

291+380

220+19380

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

36

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

140
118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

75+374

140+253

118+329

239+176

291+380

366+160

317+100

220+19380

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

37

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

140
118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

75+374

140+253

118+329

239+176

291+380

366+160

317+100

220+19380

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

38

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

140
118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

75+374

140+253

118+329

239+176

291+380

366+160

317+100

450+0

220+19380

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

39

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

140
118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

75+374

140+253

118+329

239+176

291+380

366+160

317+100

450+0

220+19380

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

40

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

140
118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

75+374

140+253

118+329

239+176

291+380

366+160

317+100

450+0
418+0

220+19380

75

71

A* Example Straight-line distance
to Bucharest
Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

41

Arad

Bucharest

Craiova
Dobreta

Eforie

Fagaras

Giurgiu

Hirsova

Iasi

Lugoj

Mehadia

Neamt

Oradea

Pitesti

Rimnicu Vilcea

Sibiu

Timisoara

Urziceni

Vaslui

Zerind
151

140
118

111

70

75

120

138

146

97

99

211

101

90

85

87

92

142

98

86

0+366

75+374

140+253

118+329

239+176

291+380

366+160

317+100

450+0
418+0

A* Algorithm
State

Location
Neighboring states

Search space
Related to terrain format
Grids
Triangles or Convex Polygons
Points of Visibility

Cost estimate
Path

Typical A* path
Straight path
Smooth path

Hierarchical path finding
42

Search Space &
Neighboring States

Rectangular Grid
Use grid center

Quadtree
Use grid center

Triangles or
Convex Polygons

Use edge mid-
point
Use triangle
center

43

Rectangular Grid

QuadtreeTriangles

Search Space &
Neighboring States

Points of Visibility (POV)
Generalized cylinders

Use intersections

44Points of Visibility Generalized Cylinders

Cost Estimate
Cost function

CostFromStart
CostToGoal

Minimum cost
Distance traveled
Time of traveled
Movement points expended
Fuel consumed
Penalties for passing through undesired area
Bonuses for passing through desired area
…

Estimate
To goal “distance”

45

Result Path

46

Typical A* Path Straight Path Smooth Path
(Catmull-Rom Spline)

Hierarchical Path Finding

Break the terrain for path finding to
several ones hierarchically

Room-to-Room
3D layered terrain
Terrain LOD

Pros
Speedup the search
Solve the problem of layered path finding

48

Path Finding Challenges

Moving Goal
Do you need to find path each frame ?

Moving Obstacles
Prediction Scheme

Complexity of the Terrain
Hierarchical path finding

“Good” Path

49

Introduction to FSM
Finite State Machine (FSM) is the most
commonly used game AI technology today.

Simple
Efficient
Easily extensible
Powerful enough to handle a wide variety of
situations

Theory (simplified)
A set of states, S
An input vocabulary, I
Transition function, T(s, i)

Map a state and an input to another state
50

Introduction to FSM
Practical use

State
Behavior

Transition
Across states
Conditions

It’s all about driving behavior
Flow-chart diagram

UML State chart
Arrow

Transition
Rectangle

State

51

FSM Example

52

Gather
Treasure

Flee

Fight

Monster in sight

No monster

FSM for Games

Character AI
“Decision-Action” model
Behavior

Mental state

Transition
Players’ action
The other characters’ actions
Some features in the game world

53

Implement FSM

Code-based FSM
Simple Code One Up

Straightforward
Most common

Macro-assisted FSM Language

Data-Driven FSM
FSM Script Language

54

Coding an FSM – Code Example
void RunLogic(int *state) {

switch(*state) {
case 0: // Gather Treasure

GatherTreasure();
if (SeeMonster()) *state = 1;
break;

case 1: // Flee
Flee();
if (!SeeMonster()) *state = 0;
if (Cornered()) *state = 2;
break;

case 2: // Fight
Fight();
if (!SeeMonster()) *state = 0;
break;

}
}

55

FSM Language Use Macros
Coding a state machine directly
causes lack of structure

Going complex when FSM at their largest
Use macros
Beneficial properties

Structure
Readability
Debugging

Simplicity

58

FSM Language Use Macros
– An Example

#define BeginStateMachine …
#define State(a) …
…
bool MyStateMachine::States(StateMachineEvent event, int state) {

BeginStateMachine
State(0)

OnUpdate
GatherTreasure();
if (SeeMonster()) SetState(1);

State(1)
OnUpdate

Flee();
SetState(0);
if (!SeeMonster()) SetState(0);
if (Cornered()) SetState(2);

State(2);
OnUpdate

if (!SeeMonster()) SetState(0);
EndStateMachine

}

59

Data-Driven FSM
Scripting language

Text-based script file
Transformed into

C++
Integrated into source code

Bytecode
Interpreted by the game

Authoring
Compiler
AI editing tool

Game
FSM script engine
FSM interface

60

Data-Driven FSM Diagram

61

Authoring

FSMs bytecodeCompiler

AI Editing
Tool

Condition &
Action

Vocabulary

Games

FSM Script
Engine

Game
Engine

FSM
Interface

Condition &
Action Code

Artist,
Designers, &
Developers

AI Editing Tool for FSM
Pure text

Syntax ?
Visual graph with text
Used by Designers, Artists, or Developers

Non-programmers
Conditions & action vocabulary

SeeMonster
Cornered
Fight
…

62

FSM Interface
Facilitating the binding between
vocabulary and game world
Glue layer that implements the
condition & action vocabulary in the
game world
Native conditions

SeeMonster(), Cornered()
Action library

Fight(…)

63

FSM Script Language Benefits

Accelerated productivity
Contributions from artists & designers
Ease of use
Extensibility

64

Processing Models for FSMs
Processing the FSMs

Evaluate the transition conditions for current
state
Perform any associated actions

When and how ?
Depend on the exact need of games

Three common FSM processing models
Polling
Event-driven
Multithread

65

Polling Processing Model
Processing each FSM at regular time intervals

Tied to game frame rate
Or some desired FSM update frequency
Limit one state transition in a cycle
Give a FSM a time-bound

Pros
Straightforward
Easy to implement
Easy to debug

Cons
Inefficiency

Some transition are not necessary to check every frame
Careful design to your FSM

66

Event-driven Processing Model
Designed to prevent from wasted FSM processing
An FSM is only processed when it’s relevant
Implementation

A Publish-subscribe messaging system (Observer
pattern)
Allows the engine to send events to individual FSMs
An FSM subscribes only to the events that have the
potential to change the current state
When an event is generated, the FSMs subscribed to
that events are all processed

“As-needed” approach
Should be much more efficient than polling ?

Tricky balance for fine-grained or coarse-grained
events

67

Multithread Processing Model
Both polling & event-driven are serially processed
Multithread processing model

Each FSM is assigned to its own thread for processing
Game engine is running in another separate thread
All FSM processing is effectively concurrent and continuous
Communication between threads must be thread-safe

Using standard locking & synchronization mechanisms
Pros

FSM as an autonomous agent who can constantly and
independently examine and react to his environment

Cons
Overhead when many simultaneous characters active
Multithreaded programming is difficult

68

FSM Efficiency & Optimization
Two categories :

Time spent
Computational cost

Scheduled processing
Priority for each FSM
Different update frequency

Load balancing scheme
Collecting statistics of past performance & extrapolating

Time-bound for each FSM
Do careful design

At the design level
Level-of-detail FSMs

71

Level-Of-Detail FSMs
Simplify the FSM when the player won’t notice
the differences

Outside the player’s perceptual range
Just like the LOD technique used in 3D game engine

Three design keys :
Decide how many LOD levels

How much development time available ?
The approximation extent

LOD selection policy
The distance between the NPC with the player ?
If the NPC can “see” the player ?
Be careful the problem of “visible discontinuous
behavior”

What kind of approximations
Cheaper and less accurate solution

72

A Hierarchical FSM Example

74

Gather
Treasure

Flee

Fight

Monster in sight

No monster

Find
Treasure

Go To
Treasure

Take
Treasure

Find
Treasure
Gather

Treasure

Live

Active FSM

Stack

Motion Behavior

Action selection
Steering
Locomotion

76

A Hierarchy of Motion Behavior

Action Selection: strategy, goals, planning

Steering: path determination

Locomotion: animation, articulation

Action Selection

Game AI engine
State machine

Discussed in “Finite State Machine” section
Goals
Planning
Strategy

Scripting
Assigned by players

Players’ input
77

Steering
Path determination

Path finding or path planning
Discussed in “Path Finding”

Behaviors
Seek & flee
Pursuit & evasion
Obstacle avoidance
Wander
Path following
Unaligned collision avoidance

Group steering

78

Locomotion

Character physically-based models
Movement

Turn right, move forward, …

Animation
By artists

Implemented / managed
by game engine

79

A Simple Vehicle Model
A point mass

Linear momentum
No rotational momentum

Parameters
Mass
Position
Velocity

Modified by applied forces
Max speed

Top speed of a vehicle
Max steering force

Self-applied
Orientation

Car
Aircraft

80

A Simple Vehicle Model
Local space

Origin
Forward
Up
Side

Steering forces
Asymmetrical

Thrust
Braking
Steering

Velocity alignment
No slide, spin, …
Turn

81

Seek & Flee Behaviors
Pursuit to a static target

Steer a character toward to a target position
“A moth buzzing a light bulb”
Flee

Inverse of seek
Variants

Arrival
Pursuit to a moving target

Seek Steering force
desired_velocity = normalize(target - position)*max_speed
steering = desired_velocity – velocity

83

Arrival Behavior
Identical to “Seek” while the character is
far from its target
Slow down as approaching the target,
eventually slowing to a stop coincident
with the target
The desired velocity is clipped to
max_speed outside
the stopping radius,
and inside it is
ramped down
(e.g. linearly) to zero.

85

Pursuit & Evasion Behaviors
Target is moving
Apply seek or flee to the target’s predicted
position
Estimate the prediction interval T

T = Dc
D = distance(pursuit, quarry)
c = turning parameter

Variants
Offset pursuit

“Fly by”

86

Offset Pursuit Behavior
Passes near, but not directly into a
moving target
Flying near enough to be within weapon
range without colliding with the target
Compute a target point given a
radius R from the
target’s predicted
position, and seek
the point

87

Obstacle Avoidance Behavior
Use bounding sphere
Not collision detection
Probe

A cylinder lying along forward axis
Diameter = character’s bounding sphere
Length = speed (means Alert range)

Find the most threaten obstacle
Nearest intersected obstacle

Steering

88

steering force

Wander Behavior
Random steering
One solution :

Retain steering direction state
Constrain steering force to the sphere surface
located slightly ahead of the character

Make small random displacements to it each
frame

A small sphere on sphere surface to indicate and
constrain the displacement

Another one :
Perlin noise

Variants
Explore

89

Path Following Behavior

90

The path
Spine

A spline or poly-line to define the path
Pipe

The tube or generated cylinder by a defined “radius”
Following

A velocity-based prediction position
Inside the tube

Do nothing about steering
Outside the tube

“Seek” to the on-path projection

Variants
Wall following
Containment

Flow Field Following Behavior

A flow field environment is defined.
Virtual reality

Not common in games

91

Unaligned
Collision Avoidance Behavior

Turn away from possible collision
Predict the potential collision

Use bounding spheres
If possibly collide,

Apply the steering on both characters
Steering direction is possible collision result

Use “future” possible
position
The connected line
between two sphere
centers

92

Steering Behaviors
for Groups of Characters

Steering behaviors determining how
the character reacts to the other
characters within his/her local
neighborhood
The behaviors including :

Separation
Cohesion
Alignment

93

The Local Neighborhood
of a Character

The local neighborhood is defined as :
A distance
The field-of-view

Angle

94The Neighborhood

Separation Behavior
Make a character to maintain a distance
from others nearby.

Compute the repulsive forces within local
neighborhood

Calculate the position vector for each nearby
Normalize it
Weight the magnitude
with distance

1/distance
Sum the result forces
Negate it

95

Cohesion Behavior

Make a character to cohere with the
others nearby

Compute the cohesive forces within local
neighborhood

Compute the average position of the others
nearby

Gravity center
Apply “Seek” to the
position

96

Alignment Behavior

Make a character to align with the
others nearby

Compute the steering force
Average the together velocity of all other
characters nearby
The result is the desired velocity
Correct the current
velocity to the desired
one with the steering
force

97

Flocking/Crowd Behavior
“Boids Model of Flocks”

[Reynolds 87]
Combination of :

Separation steering
Cohesion steering
Alignment steering

For each combination including :
A weight for each combination
A distance
An Angle

98

Leader Following Behavior

Follow a leader
Stay with the leader

“Pursuit” behavior (Arrival style)
Stay out of the leader’s way

Defined as “next position” with an extension
“Evasion” behavior when inside the above
area

“Separation” behavior
for the followers

99

Behavior Conclusion
A simple vehicle
model with local
neighborhood
Common steering
behaviors including :

Seek
Flee
Pursuit
Evasion
Offset pursuit
Arrival
Obstacle avoidance

Wander
Path following
Wall following
Containment
Flow field following
Unaligned collision
avoidance
Separation
Cohesion
Alignment
Flocking
Leader following

100

More Topics in Game AI

Scripting
Goal-based planning
Rule-based inference engine
Neural network
References

Game Programming Gems
AI Game Programming Wisdom

101

	Game Programming
	Game AI
	Search
	Introduction to Search
	Search Examples�in Traditional AI
	Search Algorithm
	Depth-First Search
	Depth-First Search
	Depth-First Search Algorithm
	Breadth-First Search
	Breadth-First Search Algorithm
	Heuristic Search
	Heuristic Search
	Adversary Search
	MinMax
	MinMax
	MinMax Idea
	MinMax Algorithm
	MinMax
	MinMax Algorithm
	MinMax Algorithm (final)
	Introduction to Path Finding
	Dijkstra vs. A*
	Dijkstra vs. A*
	A*: cost functions
	A*: cost functions
	A* Algorithm
	Example
	A* Example
	A* Example
	A* Example
	A* Example
	A* Example
	A* Example
	A* Example
	A* Example
	A* Example
	A* Example
	A* Example
	A* Algorithm
	Search Space &�Neighboring States
	Search Space &�Neighboring States
	Cost Estimate
	Result Path
	Hierarchical Path Finding
	Path Finding Challenges
	Introduction to FSM
	Introduction to FSM
	FSM Example
	FSM for Games
	Implement FSM
	Coding an FSM – Code Example
	FSM Language Use Macros
	FSM Language Use Macros�– An Example
	Data-Driven FSM
	Data-Driven FSM Diagram
	AI Editing Tool for FSM
	FSM Interface
	FSM Script Language Benefits
	Processing Models for FSMs
	Polling Processing Model
	Event-driven Processing Model
	Multithread Processing Model
	FSM Efficiency & Optimization
	Level-Of-Detail FSMs
	A Hierarchical FSM Example
	Motion Behavior
	Action Selection
	Steering
	Locomotion
	A Simple Vehicle Model
	A Simple Vehicle Model
	Seek & Flee Behaviors
	Arrival Behavior
	Pursuit & Evasion Behaviors
	Offset Pursuit Behavior
	Obstacle Avoidance Behavior
	Wander Behavior
	Path Following Behavior
	Flow Field Following Behavior
	Unaligned�Collision Avoidance Behavior
	Steering Behaviors�for Groups of Characters
	The Local Neighborhood�of a Character
	Separation Behavior
	Cohesion Behavior
	Alignment Behavior
	Flocking/Crowd Behavior
	Leader Following Behavior
	Behavior Conclusion
	More Topics in Game AI

