Computer Organization and Structure

Bing-Yu Chen
National Taiwan University
Storage and Other I/O Topics

- I/O Performance Measures
- Types and Characteristics of I/O Devices
- Buses
- Interfacing I/O Devices to the Memory, Processor, and OS
- Designing an I/O System
I/O Design

- I/O devices can be characterized by
 - Behavior: input, output, storage
 - Partner: human or machine
 - Data rate: bytes/sec, transfers/sec

- I/O bus connections
Typical Collection of I/O Devices

- Processor
- Cache
- Main memory
- I/O controller
- Disk
- I/O controller
- Graphics output
- I/O controller
- Network

Interrupts

Memory-I/O bus
Types and Characteristics of I/O Devices

<table>
<thead>
<tr>
<th>device</th>
<th>behavior</th>
<th>partner</th>
<th>data rate (MB/sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboard</td>
<td>input</td>
<td>human</td>
<td>0.0001</td>
</tr>
<tr>
<td>Mouse</td>
<td>input</td>
<td>human</td>
<td>0.0038</td>
</tr>
<tr>
<td>Voice Input</td>
<td>input</td>
<td>human</td>
<td>0.2640</td>
</tr>
<tr>
<td>Sound Input</td>
<td>input</td>
<td>machine</td>
<td>3.0000</td>
</tr>
<tr>
<td>Scanner</td>
<td>input</td>
<td>human</td>
<td>3.2000</td>
</tr>
<tr>
<td>Voice Output</td>
<td>output</td>
<td>human</td>
<td>0.2640</td>
</tr>
<tr>
<td>Sound Output</td>
<td>output</td>
<td>human</td>
<td>8.0000</td>
</tr>
<tr>
<td>Laser Printer</td>
<td>output</td>
<td>human</td>
<td>3.2000</td>
</tr>
<tr>
<td>Graphics Display</td>
<td>output</td>
<td>human</td>
<td>800.0000-8000.0000</td>
</tr>
<tr>
<td>Cable Modem</td>
<td>input or output</td>
<td>machine</td>
<td>0.1280-6.0000</td>
</tr>
<tr>
<td>Network / LAN</td>
<td>input or output</td>
<td>machine</td>
<td>100.0000-10000.0000</td>
</tr>
<tr>
<td>Network / wireless LAN</td>
<td>input or output</td>
<td>machine</td>
<td>11.0000-54.0000</td>
</tr>
<tr>
<td>Optical Disk</td>
<td>storage</td>
<td>machine</td>
<td>80.0000-220.0000</td>
</tr>
<tr>
<td>Magnetic Tape</td>
<td>storage</td>
<td>machine</td>
<td>5.0000-120.0000</td>
</tr>
<tr>
<td>Flash Memory</td>
<td>storage</td>
<td>machine</td>
<td>32.0000-200.0000</td>
</tr>
<tr>
<td>Magnetic Disk</td>
<td>storage</td>
<td>machine</td>
<td>800.0000-3000.0000</td>
</tr>
</tbody>
</table>
I/O System Characteristics

- Dependability is important
 - Particularly for storage devices

- Performance measures
 - Latency (response time)
 - Throughput (bandwidth)
 - Desktops & embedded systems
 - Mainly interested in response time & diversity of devices
 - Servers
 - Mainly interested in throughput & expandability of devices
Dependability

- **Fault:** failure of a component
 - May or may not lead to system failure

Service accomplishment
- Service delivered as specified

Service interruption
- Deviation from specified service

- Restoration
- Failure
Dependability Measures

- Reliability: mean time to failure (MTTF)
- Service interruption: mean time to repair (MTTR)
- Mean time between failures
 - \[MTBF = MTTF + MTTR \]
- Availability = \(\frac{MTTF}{MTTF + MTTR} \)
- Improving Availability
 - Increase MTTF: fault avoidance, fault tolerance, fault forecasting
 - Reduce MTTR: improved tools and processes for diagnosis and repair
Disk Storage

- Nonvolatile, rotating magnetic storage
Disk Sectors and Access

- Each sector records:
 - Sector ID
 - Data (512 bytes, 4096 bytes proposed)
 - Error correcting code (ECC)
 - Used to hide defects and recording errors
 - Synchronization fields and gaps

- Access to a sector involves:
 - Queuing delay if other accesses are pending
 - Seek: move the heads
 - Rotational latency
 - Data transfer
 - Controller overhead
Disk Access Example

- **Given**
 - 512B sector, 15,000rpm, 4ms average seek time, 100MB/s transfer rate, 0.2ms controller overhead, idle disk

- **Average read time**
 - 4ms seek time
 + $\frac{1}{2} / (15,000/60) = 2$ms rotational latency
 + $512 / 100$MB/s = 0.005ms transfer time
 + 0.2ms controller delay
 - = 6.2ms

- If actual average seek time is 1ms
 - Average read time = 3.2ms
Disk Performance Issues

- Manufacturers quote average seek time
 - Based on all possible seeks
 - Locality and OS scheduling lead to smaller actual average seek times

- Smart disk controller allocate physical sectors on disk
 - Present logical sector interface to host
 - SCSI, ATA, SATA

- Disk drives include caches
 - Prefetch sectors in anticipation of access
 - Avoid seek and rotational delay
Flash Storage

- Non-volatile semiconductor storage
 - 100× – 1000× faster than disk
 - Smaller, lower power, more robust
 - But more $/GB (between disk and DRAM)
Flash Types

- NOR flash: bit cell like a NOR gate
 - Random read/write access
 - Used for instruction memory in embedded systems

- NAND flash: bit cell like a NAND gate
 - Denser (bits/area), but block-at-a-time access
 - Cheaper per GB
 - Used for USB keys, media storage, ...

- Flash bits wears out after 1000’s of accesses
 - Not suitable for direct RAM or disk replacement
 - Wear levelling: remap data to less used blocks
Interconnecting Components

- Need interconnections between
 - CPU, memory, I/O controllers
- Bus: shared communication channel
 - Parallel set of wires for data and synchronization of data transfer
 - Can become a bottleneck
- Performance limited by physical factors
 - Wire length, number of connections
- More recent alternative: high-speed serial connections with switches
 - Like networks
Bus Types

- Processor-Memory buses
 - Short, high speed
 - Design is matched to memory organization

- I/O buses
 - Longer, allowing multiple connections
 - Specified by standards for interoperability
 - Connect to processor-memory bus through a bridge
Bus Signals and Synchronization

- **Data lines**
 - Carry address and data
 - Multiplexed or separate

- **Control lines**
 - Indicate data type, synchronize transactions

- **Synchronous**
 - Uses a bus clock

- **Asynchronous**
 - Uses request/acknowledge control lines for handshaking
I/O Bus Examples

<table>
<thead>
<tr>
<th></th>
<th>Firewire</th>
<th>USB 2.0</th>
<th>PCI Express</th>
<th>Serial ATA</th>
<th>Serial Attached SCSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intended use</td>
<td>External</td>
<td>External</td>
<td>Internal</td>
<td>Internal</td>
<td>External</td>
</tr>
<tr>
<td>Devices per channel</td>
<td>63</td>
<td>127</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Data width</td>
<td>4</td>
<td>2</td>
<td>2/lane</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Peak bandwidth</td>
<td>50MB/s or 100MB/s</td>
<td>0.2MB/s, 1.5MB/s, or 60MB/s</td>
<td>250MB/s/lane 1×, 2×, 4×, 8×, 16×, 32×</td>
<td>300MB/s</td>
<td>300MB/s</td>
</tr>
<tr>
<td>Hot pluggable</td>
<td>Yes</td>
<td>Yes</td>
<td>Depends</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Max length</td>
<td>4.5m</td>
<td>5m</td>
<td>0.5m</td>
<td>1m</td>
<td>8m</td>
</tr>
<tr>
<td>Standard</td>
<td>IEEE 1394</td>
<td>USB Implementers</td>
<td>PCI-SIG</td>
<td>SATA-IO</td>
<td>INCITS TC T10</td>
</tr>
</tbody>
</table>

Implementers:
- PCI-SIG
- SATA-IO
- INCITS TC T10
I/O Management

- I/O is mediated by the OS
 - Multiple programs share I/O resources
 - Need protection and scheduling
 - I/O causes asynchronous interrupts
 - Same mechanism as exceptions
 - I/O programming is fiddly
 - OS provides abstractions to programs
I/O Commands

- I/O devices are managed by I/O controller hardware
 - Transfers data to/from device
 - Synchronizes operations with software
- Command registers
 - Cause device to do something
- Status registers
 - Indicate what the device is doing and occurrence of errors
- Data registers
 - Write: transfer data to a device
 - Read: transfer data from a device
I/O Register Mapping

- Memory mapped I/O
 - Registers are addressed in same space as memory
 - Address decoder distinguishes between them
 - OS uses address translation mechanism to make them only accessible to kernel

- I/O instructions
 - Separate instructions to access I/O registers
 - Can only be executed in kernel mode
 - Example: x86
Polling

- Periodically check I/O status register
 - If device ready, do operation
 - If error, take action
- Common in small or low-performance real-time embedded systems
 - Predictable timing
 - Low hardware cost
- In other systems, wastes CPU time
Interrupts

- When a device is ready or error occurs
 - Controller interrupts CPU

- Interrupt is like an exception
 - But not synchronized to instruction execution
 - Can invoke handler between instructions
 - Cause information often identifies the interrupting device

- Priority interrupts
 - Devices needing more urgent attention get higher priority
 - Can interrupt handler for a lower priority interrupt
I/O Data Transfer

- **Polling and interrupt-driven I/O**
 - CPU transfers data between memory and I/O data registers
 - Time consuming for high-speed devices

- **Direct memory access (DMA)**
 - OS provides starting address in memory
 - I/O controller transfers to/from memory autonomously
 - Controller interrupts on completion or error
DMA/Cache Interaction

- If DMA writes to a memory block that is cached
 - Cached copy becomes stale
- If write-back cache has dirty block, and DMA reads memory block
 - Reads stale data
- Need to ensure cache coherence
 - Flush blocks from cache if they will be used for DMA
 - Or use non-cacheable memory locations for I/O
DMA/VM Interaction

- OS uses virtual addresses for memory
 - DMA blocks may not be contiguous in physical memory
- Should DMA use virtual addresses?
 - Would require controller to do translation
- If DMA uses physical addresses
 - May need to break transfers into page-sized chunks
 - Or chain multiple transfers
 - Or allocate contiguous physical pages for DMA
Measuring I/O Performance

- I/O performance depends on
 - Hardware: CPU, memory, controllers, buses
 - Software: operating system, database management system, application
 - Workload: request rates and patterns

- I/O system design can trade-off between response time and throughput
 - Measurements of throughput often done with constrained response-time
Amdahl’s Law

Don’t neglect I/O performance as parallelism increases compute performance.

Example

Benchmark takes 90s CPU time, 10s I/O time

Double the number of CPUs/2 years

I/O unchanged

<table>
<thead>
<tr>
<th>Year</th>
<th>CPU time</th>
<th>I/O time</th>
<th>Elapsed time</th>
<th>% I/O time</th>
</tr>
</thead>
<tbody>
<tr>
<td>now</td>
<td>90s</td>
<td>10s</td>
<td>100s</td>
<td>10%</td>
</tr>
<tr>
<td>+2</td>
<td>45s</td>
<td>10s</td>
<td>55s</td>
<td>18%</td>
</tr>
<tr>
<td>+4</td>
<td>23s</td>
<td>10s</td>
<td>33s</td>
<td>31%</td>
</tr>
<tr>
<td>+6</td>
<td>11s</td>
<td>10s</td>
<td>21s</td>
<td>47%</td>
</tr>
</tbody>
</table>
RAID

- Redundant Array of Inexpensive (Independent) Disks
 - Use multiple smaller disks (c.f. one large disk)
 - Parallelism improves performance
 - Plus extra disk(s) for redundant data storage

- Provides fault tolerant storage system
 - Especially if failed disks can be “hot swapped”

- RAID 0
 - No redundancy ("AID"?)
 - Just stripe data over multiple disks
 - But it does improve performance
RAID 1 & 2

- **RAID 1: Mirroring**
 - N + N disks, replicate data
 - Write data to both data disk and mirror disk
 - On disk failure, read from mirror

- **RAID 2: Error correcting code (ECC)**
 - N + E disks (e.g., 10 + 4)
 - Split data at bit level across N disks
 - Generate E-bit ECC
 - Too complex, not used in practice
RAID 3: Bit-Interleaved Parity

- N + 1 disks
 - Data striped across N disks at byte level
 - Redundant disk stores parity
- Read access
 - Read all disks
- Write access
 - Generate new parity and update all disks
- On failure
 - Use parity to reconstruct missing data

- Not widely used
RAID 4: Block-Interleaved Parity

- N + 1 disks
 - Data striped across N disks at block level
 - Redundant disk stores parity for a group of blocks
- Read access
 - Read only the disk holding the required block
- Write access
 - Just read disk containing modified block, and parity disk
 - Calculate new parity, update data disk and parity disk
- On failure
 - Use parity to reconstruct missing data
- Not widely used
RAID 3 vs RAID 4

New Data 1. Read 2. Read 3. Read

New Data 1. Read 2. Read

1. Write

2. Write

3. Write

4. Write

5. Write
RAID 5: Distributed Parity

- **N + 1 disks**
 - Like RAID 4, but parity blocks distributed across disks
 - Avoids parity disk being a bottleneck

- Widely used
RAID 6: P + Q Redundancy

- N + 2 disks
 - Like RAID 5, but two lots of parity
 - Greater fault tolerance through more redundancy

- Multiple RAID
 - More advanced systems give similar fault tolerance with better performance
I/O System Design

- Satisfying latency requirements
 - For time-critical operations
 - If system is unloaded
 - Add up latency of components

- Maximizing throughput
 - Find “weakest link” (lowest-bandwidth component)
 - Configure to operate at its maximum bandwidth
 - Balance remaining components in the system

- If system is loaded, simple analysis is insufficient
 - Need to use queuing models or simulation
Server Computers

- Applications are increasingly run on servers
 - Web search, office apps, virtual worlds, ...

- Requires large data center servers
 - Multiple processors, networks connections, massive storage
 - Space and power constraints

- Server equipment built for 19” racks
 - Multiples of 1.75” (1U) high
Rack-Mounted Servers

Sun Fire x4150 1U server

- 2 Redundant power Supplies
- 3 PCI Express Slots
- System Status LEDs
- Management NIC
- 2 USB Ports
- 4 Gigabit NICs
- Video