Digital System Design for Circuit and Electronics

Additional material

Intro. VLSI: CMOS inverter

Plate 5 Layout of simple CMOS inverter (version of Fig. 3.12).

CMOS inverter: black and white representation

A counter layout

Plate 10 Completed layout for counter example of Appendix A (version of Fig. A.6).

Rules for design rule checking: basic rules

metal 1 Minimum width is 3λ, minimum separation is 3λ.
metal 2 Minimum width is 3λ. minimum separation is 4λ.
polysilicon Minimum width is 2λ, minimum poly-poly separation is 2λ.
\mathbf{p}-, \mathbf{n}-diffusion Minimum width is 3λ, minimum separation between sametype diffusions is 3λ. minimum p-diff-n-diff separation is 10λ.
tubs Tubs must be at least 10λ wide. The minimum distance from the tub edge to source/drain active area is 5λ.

Rules for composition

- transistors The smallest transistor is of width 3λ and length 2λ : poly extends 2λ beyond the active region and diffusion extends 3λ. The active region must be at least 1λ from a poly-metal via, 2λ from another transistor, and 3λ from a tub tie.
- vias Cuts are $2 \lambda \times 2 \lambda$: the material on both layers to be connected extends 1λ in all directions from the cut, making the total wia size $4 \lambda \times 4 \lambda$. (MOSIS also suggests another via construction with 1.5λ of material around the cut. This construction is safer but the fractional design rule may cause problems with some design tools.) Available via types are:
- n/p-diffusion-poly;
- poly-metal 1;
- n/p-diffusion-metal 1;
- metal 1-metal 2;

Concept of the State Machine
Example: Odd Parity Checker
Next State/Output Functions
NS = PS xor PI; OUT = PS

D FF Implementation

T FF Implementation

Timing Behavior: Input 100110101110

State Behavior of R-S Latch

S	R	Q
0	0	hold
0	1	0
1	0	1
1	1	unstable

Truth Table Summary of R-S Latch Behavior

D-FlipFlop

Edge triggered device sample inputs on the event edge

Cascaded Flipflops and Setup/Hold/Propagation Delays

Shift Register S, R are preset, preclear

New value to first stage while second stage obtains current value of first stage

Correct Operation, assuming positive edge triggered FF

Design Procedure

Excitation Tables: What are the necessary inputs to cause a particular kind of change in state?

Q	Q^{+}	R	S	J	K	T	D
0	0	X	0	0	X	0	0
0	1	0	1	1	X	1	1
1	0	1	0	X	1	1	0
1	1	0	X	X	0	0	1

Design problem

- Please design a sequence recognizer of 1011, using first a RS flip-flop, then a D flip flop.

Ex.
Design a sequential circuit that detects an input sequence of 1011. The sequence may overlap.

A 1011 sequence defector gives an output of 1 when the input completes a sequence of 1011. Because overlap is allowed the last 1 in the 1011 sequence could be the first bit of the next 1011 sequence, and hence a further input of 011 is enough to produce an output of 1 . That is, the input sequence 1011011 consists of two overlapping sequences.

from Fig.8.12

Results

X	0	1		
00 Y1 Y2	0	1		
01	0	1		
10	0	1		
11	0	1		

X	0	1		
00	0	1		
01	0	1		
10	0	1		
11	0	1		

> Input $=X$
> $D=X$
> $S=X^{\prime} Y 1^{\prime} Y 2$
> $R=X^{\prime} Y 1 Y 2^{\prime}+X Y 1 Y 2$
> $Z=X Y 1 Y 2$ (output)

Circuit of 1011 recognizer

$$
\begin{array}{ll}
\text { input }=x \\
D=x, & 5=x^{\prime} Y_{1}^{\prime} Y_{2} \\
& R=x^{\prime} Y_{1} Y_{2}^{\prime}+X Y_{1} Y_{2} \\
\text { output } & Z=X Y_{1}^{\prime} Y_{2}
\end{array}
$$

END

